These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 34225762)
21. Celecoxib Augments Paclitaxel-Induced Immunogenic Cell Death in Triple-Negative Breast Cancer. Qian X; Yang H; Ye Z; Gao B; Qian Z; Ding Y; Mao Z; Du Y; Wang W ACS Nano; 2024 Jun; 18(24):15864-15877. PubMed ID: 38829727 [TBL] [Abstract][Full Text] [Related]
22. Facile one-pot formulation of TRAIL-embedded paclitaxel-bound albumin nanoparticles for the treatment of pancreatic cancer. Min SY; Byeon HJ; Lee C; Seo J; Lee ES; Shin BS; Choi HG; Lee KC; Youn YS Int J Pharm; 2015 Oct; 494(1):506-15. PubMed ID: 26315118 [TBL] [Abstract][Full Text] [Related]
23. Enhanced antitumor efficacy by d-glucosamine-functionalized and paclitaxel-loaded poly(ethylene glycol)-co-poly(trimethylene carbonate) polymer nanoparticles. Jiang X; Xin H; Gu J; Du F; Feng C; Xie Y; Fang X J Pharm Sci; 2014 May; 103(5):1487-96. PubMed ID: 24619482 [TBL] [Abstract][Full Text] [Related]
24. Macrophage-Derived Extracellular Vesicles as Drug Delivery Systems for Triple Negative Breast Cancer (TNBC) Therapy. Haney MJ; Zhao Y; Jin YS; Li SM; Bago JR; Klyachko NL; Kabanov AV; Batrakova EV J Neuroimmune Pharmacol; 2020 Sep; 15(3):487-500. PubMed ID: 31722094 [TBL] [Abstract][Full Text] [Related]
25. A novel polyethylene glycol mediated lipid nanoemulsion as drug delivery carrier for paclitaxel. Jing X; Deng L; Gao B; Xiao L; Zhang Y; Ke X; Lian J; Zhao Q; Ma L; Yao J; Chen J Nanomedicine; 2014 Feb; 10(2):371-80. PubMed ID: 23969104 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of the efficacy and safety of a new formulation-lipid emulsion-based PTX injection: Pharmacokinetics, tissue distributions and anticancer effect on human gastric cancer cells in vitro. Fei Y; Wang Y; Wu S; Shen F; Fan G Biomed Chromatogr; 2021 Aug; 35(8):e5107. PubMed ID: 33651440 [TBL] [Abstract][Full Text] [Related]
27. Nanomicellar Formulations Loaded with Histamine and Paclitaxel as a New Strategy to Improve Chemotherapy for Breast Cancer. Nicoud MB; Ospital IA; Táquez Delgado MA; Riedel J; Fuentes P; Bernabeu E; Rubinstein MR; Lauretta P; Martínez Vivot R; Aguilar MLÁ; Salgueiro MJ; Speisky D; Moretton MA; Chiappetta DA; Medina VA Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834958 [TBL] [Abstract][Full Text] [Related]
28. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy. Yang Q; Shi G; Chen X; Lin Y; Cheng L; Jiang Q; Yan X; Jiang M; Li Y; Zhang H; Wang H; Wang Y; Wang Q; Zhang Y; Liu Y; Su X; Dai L; Tang M; Li J; Zhang L; Qian Z; Yu D; Deng H Theranostics; 2020; 10(18):8382-8399. PubMed ID: 32724476 [TBL] [Abstract][Full Text] [Related]
29. Natural Particulates Inspired Specific-Targeted Codelivery of siRNA and Paclitaxel for Collaborative Antitumor Therapy. Wang R; Zhao Z; Han Y; Hu S; Opoku-Damoah Y; Zhou J; Yin L; Ding Y Mol Pharm; 2017 Sep; 14(9):2999-3012. PubMed ID: 28753317 [TBL] [Abstract][Full Text] [Related]
30. Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: preparation and comparison with other paclitaxel systems in vitro and in vivo. Lu J; Chuan X; Zhang H; Dai W; Wang X; Wang X; Zhang Q Int J Pharm; 2014 Aug; 471(1-2):525-35. PubMed ID: 24858391 [TBL] [Abstract][Full Text] [Related]
31. Paclitaxel/sunitinib-loaded micelles promote an antitumor response in vitro through synergistic immunogenic cell death for triple-negative breast cancer. Qin T; Xu X; Zhang Z; Li J; You X; Guo H; Sun H; Liu M; Dai Z; Zhu H Nanotechnology; 2020 Sep; 31(36):365101. PubMed ID: 32434167 [TBL] [Abstract][Full Text] [Related]
32. The theranostic efficiency of tumor-specific, pH-responsive, peptide-modified, liposome-containing paclitaxel and superparamagnetic iron oxide nanoparticles. Zheng XC; Ren W; Zhang S; Zhong T; Duan XC; Yin YF; Xu MQ; Hao YL; Li ZT; Li H; Liu M; Li ZY; Zhang X Int J Nanomedicine; 2018; 13():1495-1504. PubMed ID: 29559778 [TBL] [Abstract][Full Text] [Related]
33. Co-Delivery Nanomicelles for Potentiating TNBC Immunotherapy by Synergetically Reshaping CAFs-Mediated Tumor Stroma and Reprogramming Immunosuppressive Microenvironment. Zhang Y; Han X; Wang K; Liu D; Ding X; Hu Z; Wang J Int J Nanomedicine; 2023; 18():4329-4346. PubMed ID: 37545872 [TBL] [Abstract][Full Text] [Related]
34. Polymeric Nanomedicine for Combined Gene/Chemotherapy Elicits Enhanced Tumor Suppression. Xu B; Xia S; Wang F; Jin Q; Yu T; He L; Chen Y; Liu Y; Li S; Tan X; Ren K; Yao S; Zeng J; Song X Mol Pharm; 2016 Feb; 13(2):663-76. PubMed ID: 26695934 [TBL] [Abstract][Full Text] [Related]
35. Encapsulating paclitaxel in polymeric nanomicelles increases antitumor activity and prevents peripheral neuropathy. Oda CMR; Silva JO; Fernandes RS; Braga AV; Machado RR; Coelho MM; Cassali GD; Reis DC; de Barros ALB; Leite EA Biomed Pharmacother; 2020 Dec; 132():110864. PubMed ID: 33254426 [TBL] [Abstract][Full Text] [Related]
36. Targeted antitumor comparison study between dopamine self-polymerization and traditional synthesis for nanoparticle surface modification in drug delivery. Zhang M; Zou Y; Zuo C; Ao H; Guo Y; Wang X; Han M Nanotechnology; 2021 May; 32(30):. PubMed ID: 33862617 [TBL] [Abstract][Full Text] [Related]
37. An albumin-bound drug conjugate of paclitaxel and indoleamine-2,3-dioxygenase inhibitor for enhanced cancer chemo-immunotherapy. Hu Z; Zheng B; Xu J; Gao S; Lu W Nanotechnology; 2020 May; 31(29):295101. PubMed ID: 32203949 [TBL] [Abstract][Full Text] [Related]