These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Toward a consensus view of duplex RNA flexibility. Faustino I; Pérez A; Orozco M Biophys J; 2010 Sep; 99(6):1876-85. PubMed ID: 20858433 [TBL] [Abstract][Full Text] [Related]
5. Mechanical properties of nucleic acids and the non-local twistable wormlike chain model. Segers M; Voorspoels A; Sakaue T; Carlon E J Chem Phys; 2022 Jun; 156(23):234105. PubMed ID: 35732531 [TBL] [Abstract][Full Text] [Related]
6. Blind predictions of DNA and RNA tweezers experiments with force and torque. Chou FC; Lipfert J; Das R PLoS Comput Biol; 2014 Aug; 10(8):e1003756. PubMed ID: 25102226 [TBL] [Abstract][Full Text] [Related]
7. Mechanical properties of DNA and DNA nanostructures: comparison of atomistic, Martini and oxDNA models. Naskar S; Maiti PK J Mater Chem B; 2021 Jun; 9(25):5102-5113. PubMed ID: 34127998 [TBL] [Abstract][Full Text] [Related]
9. Mechanical Flexibility of DNA: A Quintessential Tool for DNA Nanotechnology. Saran R; Wang Y; Li ITS Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33302459 [TBL] [Abstract][Full Text] [Related]
10. Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers. Kriegel F; Ermann N; Lipfert J J Struct Biol; 2017 Jan; 197(1):26-36. PubMed ID: 27368129 [TBL] [Abstract][Full Text] [Related]
11. Decoding the conformation-linked functional properties of nucleic acids by the use of computational tools. Iacovelli F; Falconi M FEBS J; 2015 Sep; 282(17):3298-310. PubMed ID: 25940731 [TBL] [Abstract][Full Text] [Related]
12. Explaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis. Liebl K; Drsata T; Lankas F; Lipfert J; Zacharias M Nucleic Acids Res; 2015 Dec; 43(21):10143-56. PubMed ID: 26464435 [TBL] [Abstract][Full Text] [Related]
14. Altered structural fluctuations in duplex RNA versus DNA: a conformational switch involving base pair opening. Pan Y; MacKerell AD Nucleic Acids Res; 2003 Dec; 31(24):7131-40. PubMed ID: 14654688 [TBL] [Abstract][Full Text] [Related]
15. Investigating the sequence-dependent mechanical properties of DNA nicks for applications in twisted DNA nanostructure design. Lee JY; Kim YJ; Lee C; Lee JG; Yagyu H; Tabata O; Kim DN Nucleic Acids Res; 2019 Jan; 47(1):93-102. PubMed ID: 30476210 [TBL] [Abstract][Full Text] [Related]
16. Conformational Dynamics of Mechanically Compliant DNA Nanostructures from Coarse-Grained Molecular Dynamics Simulations. Shi Z; Castro CE; Arya G ACS Nano; 2017 May; 11(5):4617-4630. PubMed ID: 28423273 [TBL] [Abstract][Full Text] [Related]
17. Comparison of molecular dynamics and harmonic mode calculations on RNA. Zacharias M Biopolymers; 2000 Dec; 54(7):547-60. PubMed ID: 10984406 [TBL] [Abstract][Full Text] [Related]
18. DNA nanotweezers studied with a coarse-grained model of DNA. Ouldridge TE; Louis AA; Doye JP Phys Rev Lett; 2010 Apr; 104(17):178101. PubMed ID: 20482144 [TBL] [Abstract][Full Text] [Related]
19. Conformation and dynamics of normal and damaged DNA. Rachofsky EL; Ross JB; Osman R Comb Chem High Throughput Screen; 2001 Dec; 4(8):675-706. PubMed ID: 11812262 [TBL] [Abstract][Full Text] [Related]
20. Structural basis of pathway-dependent force profiles in stretched DNA. Roe DR; Chaka AM J Phys Chem B; 2009 Nov; 113(46):15364-71. PubMed ID: 19845321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]