These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 34225883)
1. Evaluation of the Benefits of Microfluidic-Assisted Preparation of Polymeric Nanoparticles for DNA Delivery. Zoqlam R; Morris CJ; Akbar M; Alkilany AM; Hamdallah SI; Belton P; Qi S Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112243. PubMed ID: 34225883 [TBL] [Abstract][Full Text] [Related]
2. Precise control of microfluidic flow conditions is critical for harnessing the in vitro transfection capability of pDNA-loaded lipid-Eudragit nanoparticles. Santhanes D; Zhang H; Wilkins A; Aitken RJ; Gannon AL; Liang M Drug Deliv Transl Res; 2024 Nov; 14(11):3055-3069. PubMed ID: 38347432 [TBL] [Abstract][Full Text] [Related]
3. Utilization of Microfluidics for the Preparation of Polymeric Nanoparticles for the Antioxidant Rutin: A Comparison with Bulk Production. Vu HTH; Streck S; Hook SM; McDowell A Pharm Nanotechnol; 2019; 7(6):469-483. PubMed ID: 31648653 [TBL] [Abstract][Full Text] [Related]
4. Optimization of a new non-viral vector for transfection: Eudragit nanoparticles for the delivery of a DNA plasmid. Gargouri M; Sapin A; Bouli S; Becuwe P; Merlin JL; Maincent P Technol Cancer Res Treat; 2009 Dec; 8(6):433-44. PubMed ID: 19925027 [TBL] [Abstract][Full Text] [Related]
5. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. Hamdallah SI; Zoqlam R; Erfle P; Blyth M; Alkilany AM; Dietzel A; Qi S Int J Pharm; 2020 Jun; 584():119408. PubMed ID: 32407942 [TBL] [Abstract][Full Text] [Related]
6. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Martins JP; Torrieri G; Santos HA Expert Opin Drug Deliv; 2018 May; 15(5):469-479. PubMed ID: 29508630 [TBL] [Abstract][Full Text] [Related]
7. Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles. Niu X; Zou W; Liu C; Zhang N; Fu C Drug Dev Ind Pharm; 2009 Nov; 35(11):1375-83. PubMed ID: 19832638 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic nanoprecipitation systems for preparing pure drug or polymeric drug loaded nanoparticles: an overview. Ding S; Anton N; Vandamme TF; Serra CA Expert Opin Drug Deliv; 2016 Oct; 13(10):1447-60. PubMed ID: 27253154 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic Manufacturing of Multitargeted PLGA/PEG Nanoparticles for Delivery of Taxane Chemotherapeutics. Martins C; Sarmento B Methods Mol Biol; 2020; 2059():213-224. PubMed ID: 31435924 [TBL] [Abstract][Full Text] [Related]
12. Preparation, characterization, cytotoxicity and transfection efficiency of poly(DL-lactide-co-glycolide) and poly(DL-lactic acid) cationic nanoparticles for controlled delivery of plasmid DNA. Basarkar A; Devineni D; Palaniappan R; Singh J Int J Pharm; 2007 Oct; 343(1-2):247-54. PubMed ID: 17611054 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic Assisted Nanoprecipitation of PLGA Nanoparticles for Curcumin Delivery to Leukemia Jurkat Cells. Leung MHM; Shen AQ Langmuir; 2018 Apr; 34(13):3961-3970. PubMed ID: 29544247 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic-assisted synthesis of multifunctional iodinated contrast agent polymeric nanoplatforms. Chiesa E; Greco A; Dorati R; Conti B; Bruni G; Lamprou D; Genta I Int J Pharm; 2021 Apr; 599():120447. PubMed ID: 33676989 [TBL] [Abstract][Full Text] [Related]
15. Encapsulation of Large-Size Plasmids in PLGA Nanoparticles for Gene Editing: Comparison of Three Different Synthesis Methods. López-Royo T; Sebastián V; Moreno-Martínez L; Uson L; Yus C; Alejo T; Zaragoza P; Osta R; Arruebo M; Manzano R Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685164 [TBL] [Abstract][Full Text] [Related]
16. Translating the fabrication of protein-loaded poly(lactic-co-glycolic acid) nanoparticles from bench to scale-independent production using microfluidics. Roces CB; Christensen D; Perrie Y Drug Deliv Transl Res; 2020 Jun; 10(3):582-593. PubMed ID: 31919746 [TBL] [Abstract][Full Text] [Related]
17. Preparation of Zein-Based Nanoparticles: Nanoprecipitation versus Microfluidic-Assisted Manufacture, Effects of PEGylation on Nanoparticle Characteristics and Cellular Uptake by Melanoma Cells. Meewan J; Somani S; Almowalad J; Laskar P; Mullin M; MacKenzie G; Khadke S; Perrie Y; Dufès C Int J Nanomedicine; 2022; 17():2809-2822. PubMed ID: 35791309 [TBL] [Abstract][Full Text] [Related]
18. The Use of an Efficient Microfluidic Mixing System for Generating Stabilized Polymeric Nanoparticles for Controlled Drug Release. Morikawa Y; Tagami T; Hoshikawa A; Ozeki T Biol Pharm Bull; 2018; 41(6):899-907. PubMed ID: 29863078 [TBL] [Abstract][Full Text] [Related]
19. Calcium phosphate embedded PLGA nanoparticles: a promising gene delivery vector with high gene loading and transfection efficiency. Tang J; Chen JY; Liu J; Luo M; Wang YJ; Wei XW; Gao X; Wang BL; Liu YB; Yi T; Tong AP; Song XR; Xie YM; Zhao Y; Xiang M; Huang Y; Zheng Y Int J Pharm; 2012 Jul; 431(1-2):210-21. PubMed ID: 22561795 [TBL] [Abstract][Full Text] [Related]
20. Production of nanoparticle drug delivery systems with microfluidics tools. Khan IU; Serra CA; Anton N; Vandamme TF Expert Opin Drug Deliv; 2015 Apr; 12(4):547-62. PubMed ID: 25345543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]