BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34226123)

  • 1. Virus filter scalability: Demonstration of consistent viral clearance across laboratory and manufacturing scales.
    Buesing B; Schwartz A; Shah A; Sohka T; Hirotomi N; Strauss D
    Biologicals; 2021 Jul; 72():27-32. PubMed ID: 34226123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving a Successful Scale-Down Model and Optimized Economics through Parvovirus Filter Validation using Purified TrueSpikeTM Viruses.
    De Vilmorin P; Slocum A; Jaber T; Schaefer O; Ruppach H; Genest P
    PDA J Pharm Sci Technol; 2015; 69(3):440-9. PubMed ID: 26048749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrity testing of Planova™ BioEX virus removal filters used in the manufacture of biological products.
    Sekine S; Komuro M; Sohka T; Sato T
    Biologicals; 2015 May; 43(3):186-94. PubMed ID: 25753822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of small-scale models to understand the impact of continuous downstream bioprocessing on integrated virus filtration.
    Lute S; Kozaili J; Johnson S; Kobayashi K; Strauss D
    Biotechnol Prog; 2020 May; 36(3):e2962. PubMed ID: 31945257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the impact of pressure on virus filtration processes and establishing design spaces to ensure effective parvovirus removal.
    Strauss D; Goldstein J; Hongo-Hirasaki T; Yokoyama Y; Hirotomi N; Miyabayashi T; Vacante D
    Biotechnol Prog; 2017 Sep; 33(5):1294-1302. PubMed ID: 28556575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic visualization of virus removal by dedicated filters used in biopharmaceutical processing: Impact of membrane structure and localization of captured virus particles.
    Adan-Kubo J; Tsujikawa M; Takahashi K; Hongo-Hirasaki T; Sakai K
    Biotechnol Prog; 2019 Nov; 35(6):e2875. PubMed ID: 31228338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation and implementation of Planova™ BioEX virus filters in the manufacture of a new liquid intravenous immunoglobulin in China.
    Ma S; Pang GL; Shao YJ; Hongo-Hirasaki T; Shang MX; Inouye M; Jian CY; Zhu MZ; Yang HH; Gao JF; Xi ZY; Song DW
    Biologicals; 2018 Mar; 52():37-43. PubMed ID: 29434001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of Planova filters in manufacturing processes of biologicals improve the virus safety effectively: A review of publicly available data.
    Gröner A
    Biotechnol Prog; 2024; 40(1):e3398. PubMed ID: 37985214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of MMV as a Single Worst-Case Model Virus in Viral Filter Validation Studies.
    Gefroh E; Dehghani H; McClure M; Connell-Crowley L; Vedantham G
    PDA J Pharm Sci Technol; 2014; 68(3):297-311. PubMed ID: 25188350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of bacteriophages as surrogates for mammalian viruses.
    McAlister M; Aranha H; Larson R
    Dev Biol (Basel); 2004; 118():89-98. PubMed ID: 15645677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach to achieving modular retrovirus clearance for a parvovirus filter.
    Stuckey J; Strauss D; Venkiteshwaran A; Gao J; Luo W; Quertinmont M; O'Donnell S; Chen D
    Biotechnol Prog; 2014; 30(1):79-85. PubMed ID: 24123923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the performance characteristics of the Planova-series hollow-fiber parvovirus filters using confocal and electron microscopy.
    Nazem-Bokaee H; Chen D; O'Donnell SM; Zydney AL
    Biotechnol Bioeng; 2019 Aug; 116(8):2010-2017. PubMed ID: 30982955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limits in virus filtration capability? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus.
    Roush DJ; Myrold A; Burnham MS; And JV; Hughes JV
    Biotechnol Prog; 2015; 31(1):135-44. PubMed ID: 25395156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meeting report--workshop on virus removal by filtration: trends and new developments.
    Willkommen H; Blümel J; Brorson K; Chen D; Chen Q; Gröner A; Kreil TR; Robertson JS; Ruffing M; Ruiz S
    PDA J Pharm Sci Technol; 2013; 67(2):98-104. PubMed ID: 23569071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of virus preparation quality on parvovirus filter performance.
    Slocum A; Burnham M; Genest P; Venkiteshwaran A; Chen D; Hughes J
    Biotechnol Bioeng; 2013 Jan; 110(1):229-39. PubMed ID: 22766979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The removal of phages T1 and PP7, and poliovirus from fluids with hollow-fiber ultrafilters with molecular weight cut-offs of 50,000, 13,000, and 6000.
    Oshima KH; Evans-Strickfaden TT; Highsmith AK; Ades EW
    Can J Microbiol; 1995; 41(4-5):316-22. PubMed ID: 8590412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filter preconditioning enables representative scaled-down modelling of filter capacity and viral clearance by mitigating the impact of virus spike impurities.
    Khan NZ; Parrella JJ; Genest PW; Colman MS
    Biotechnol Appl Biochem; 2009 Apr; 52(Pt 4):293-301. PubMed ID: 18844606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Choice of parvovirus model for validation studies influences the interpretation of the effectiveness of a virus filtration step.
    Nowak T; Popp B; Roth NJ
    Biologicals; 2019 Jul; 60():85-92. PubMed ID: 31105022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of viruses from human intravenous immune globulin by 35 nm nanofiltration.
    Troccoli NM; McIver J; Losikoff A; Poiley J
    Biologicals; 1998 Dec; 26(4):321-9. PubMed ID: 10403036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of proteins and protein fouling on virus retention during virus removal filtration.
    Afzal MA; Zydney AL
    Biotechnol Bioeng; 2024 Feb; 121(2):710-718. PubMed ID: 37994529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.