These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34227242)

  • 41. Diffusion Basis Spectrum and Diffusion Tensor Imaging Detect Hippocampal Inflammation and Dendritic Injury in a Virus-Induced Mouse Model of Epilepsy.
    Zhan J; Lin TH; Libbey JE; Sun P; Ye Z; Song C; Wallendorf M; Gong H; Fujinami RS; Song SK
    Front Neurosci; 2018; 12():77. PubMed ID: 29497358
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anticipation of increasing monetary reward selectively recruits nucleus accumbens.
    Knutson B; Adams CM; Fong GW; Hommer D
    J Neurosci; 2001 Aug; 21(16):RC159. PubMed ID: 11459880
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Incentive-elicited mesolimbic activation and externalizing symptomatology in adolescents.
    Bjork JM; Chen G; Smith AR; Hommer DW
    J Child Psychol Psychiatry; 2010 Jul; 51(7):827-37. PubMed ID: 20025620
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sex differences in the influence of body mass index on anatomical architecture of brain networks.
    Gupta A; Mayer EA; Hamadani K; Bhatt R; Fling C; Alaverdyan M; Torgerson C; Ashe-McNalley C; Van Horn JD; Naliboff B; Tillisch K; Sanmiguel CP; Labus JS
    Int J Obes (Lond); 2017 Aug; 41(8):1185-1195. PubMed ID: 28360430
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Nucleus Accumbens Core Is Necessary for Responding to Incentive But Not Instructive Stimuli.
    Sicre M; Meffre J; Louber D; Ambroggi F
    J Neurosci; 2020 Feb; 40(6):1332-1343. PubMed ID: 31862857
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increased Nucleus Accumbens Volume in College Binge Drinkers - Preliminary Evidence From Manually Segmented MRI Analysis.
    Sousa SS; Sampaio A; López-Caneda E; Bec C; Gonçalves ÓF; Crego A
    Front Psychiatry; 2019; 10():1005. PubMed ID: 32116822
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep brain stimulation alters light phase food intake microstructure in rats.
    Prinz P; Kobelt P; Scharner S; Goebel-Stengel M; Harnack D; Faust K; Winter Y; Rose M; Stengel A
    J Physiol Pharmacol; 2017 Jun; 68(3):345-354. PubMed ID: 28820391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Developmentally stable whole-brain volume reductions and developmentally sensitive caudate and putamen volume alterations in those with attention-deficit/hyperactivity disorder and their unaffected siblings.
    Greven CU; Bralten J; Mennes M; O'Dwyer L; van Hulzen KJ; Rommelse N; Schweren LJ; Hoekstra PJ; Hartman CA; Heslenfeld D; Oosterlaan J; Faraone SV; Franke B; Zwiers MP; Arias-Vasquez A; Buitelaar JK
    JAMA Psychiatry; 2015 May; 72(5):490-9. PubMed ID: 25785435
    [TBL] [Abstract][Full Text] [Related]  

  • 49. mu-Opioid receptor stimulation in the nucleus accumbens elevates fatty tastant intake by increasing palatability and suppressing satiety signals.
    Katsuura Y; Heckmann JA; Taha SA
    Am J Physiol Regul Integr Comp Physiol; 2011 Jul; 301(1):R244-54. PubMed ID: 21543633
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reward-related regions form a preferentially coupled system at rest.
    Huckins JF; Adeyemo B; Miezin FM; Power JD; Gordon EM; Laumann TO; Heatherton TF; Petersen SE; Kelley WM
    Hum Brain Mapp; 2019 Feb; 40(2):361-376. PubMed ID: 30251766
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Obesity is associated with a distinct brain-gut microbiome signature that connects Prevotella and Bacteroides to the brain's reward center.
    Dong TS; Guan M; Mayer EA; Stains J; Liu C; Vora P; Jacobs JP; Lagishetty V; Chang L; Barry RL; Gupta A
    Gut Microbes; 2022; 14(1):2051999. PubMed ID: 35311453
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Individual differences in fornix microstructure and body mass index.
    Metzler-Baddeley C; Baddeley RJ; Jones DK; Aggleton JP; O'Sullivan MJ
    PLoS One; 2013; 8(3):e59849. PubMed ID: 23555805
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improving motivation through real-time fMRI-based self-regulation of the nucleus accumbens.
    Li Z; Zhang CY; Huang J; Wang Y; Yan C; Li K; Zeng YW; Jin Z; Cheung EFC; Su L; Chan RCK
    Neuropsychology; 2018 Sep; 32(6):764-776. PubMed ID: 30047755
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Importance of reward and prefrontal circuitry in hunger and satiety: Prader-Willi syndrome vs simple obesity.
    Holsen LM; Savage CR; Martin LE; Bruce AS; Lepping RJ; Ko E; Brooks WM; Butler MG; Zarcone JR; Goldstein JM
    Int J Obes (Lond); 2012 May; 36(5):638-47. PubMed ID: 22024642
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neural systems underlying reward cue processing in early adolescence: The role of puberty and pubertal hormones.
    Ladouceur CD; Kerestes R; Schlund MW; Shirtcliff EA; Lee Y; Dahl RE
    Psychoneuroendocrinology; 2019 Apr; 102():281-291. PubMed ID: 30639923
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Eating in the absence of hunger in young children is related to brain reward network hyperactivity and reduced functional connectivity in executive control networks.
    Shapiro ALB; Johnson SL; Sutton B; Legget KT; Dabelea D; Tregellas JR
    Pediatr Obes; 2019 Jun; 14(6):e12502. PubMed ID: 30659756
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning.
    Kelley AE
    Neurosci Biobehav Rev; 2004 Jan; 27(8):765-76. PubMed ID: 15019426
    [TBL] [Abstract][Full Text] [Related]  

  • 58. THC reduces the anticipatory nucleus accumbens response to reward in subjects with a nicotine addiction.
    Jansma JM; van Hell HH; Vanderschuren LJ; Bossong MG; Jager G; Kahn RS; Ramsey NF
    Transl Psychiatry; 2013 Feb; 3(2):e234. PubMed ID: 23443360
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques.
    Wacker J; Dillon DG; Pizzagalli DA
    Neuroimage; 2009 May; 46(1):327-37. PubMed ID: 19457367
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Altered morphology of the nucleus accumbens in persistent developmental stuttering.
    Neef NE; Bütfering C; Auer T; Metzger FL; Euler HA; Frahm J; Paulus W; Sommer M
    J Fluency Disord; 2018 Mar; 55():84-93. PubMed ID: 28595893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.