These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 34227381)
1. Cytosolic Protein Delivery for Intracellular Antigen Targeting Using Supercharged Polypeptide Delivery Platform. Wang Q; Yang Y; Liu D; Ji Y; Gao X; Yin J; Yao W Nano Lett; 2021 Jul; 21(14):6022-6030. PubMed ID: 34227381 [TBL] [Abstract][Full Text] [Related]
2. Potent Protein Delivery into Mammalian Cells via a Supercharged Polypeptide. Yin J; Wang Q; Hou S; Bao L; Yao W; Gao X J Am Chem Soc; 2018 Dec; 140(49):17234-17240. PubMed ID: 30398334 [TBL] [Abstract][Full Text] [Related]
3. Partial Magneto-Endosomalysis for Cytosolic Delivery of Antibodies. Zhao P; Liu S; Koriath AT; Gao X Bioconjug Chem; 2022 Feb; 33(2):363-368. PubMed ID: 35098715 [TBL] [Abstract][Full Text] [Related]
4. Demonstration of intracellular trafficking, cytosolic bioavailability, and target manipulation of an antibody delivery platform. Lv W; Champion JA Nanomedicine; 2021 Feb; 32():102315. PubMed ID: 33065253 [TBL] [Abstract][Full Text] [Related]
5. Efficient cell delivery mediated by lipid-specific endosomal escape of supercharged branched peptides. Brock DJ; Kustigian L; Jiang M; Graham K; Wang TY; Erazo-Oliveras A; Najjar K; Zhang J; Rye H; Pellois JP Traffic; 2018 Jun; 19(6):421-435. PubMed ID: 29582528 [TBL] [Abstract][Full Text] [Related]
6. A quantitative comparison of cytosolic delivery via different protein uptake systems. Verdurmen WPR; Mazlami M; Plückthun A Sci Rep; 2017 Oct; 7(1):13194. PubMed ID: 29038564 [TBL] [Abstract][Full Text] [Related]
7. Reactive oxygen species-responsive branched poly (β-amino ester) with robust efficiency for cytosolic protein delivery. Lu R; Zheng Y; Wang M; Lin J; Zhao Z; Chen L; Zhang J; Liu X; Yin L; Chen Y Acta Biomater; 2022 Oct; 152():355-366. PubMed ID: 36084925 [TBL] [Abstract][Full Text] [Related]
8. Engineered Histidine-Rich Peptides Enhance Endosomal Escape for Antibody-Targeted Intracellular Delivery of Functional Proteins. Zhao Y; Jiang H; Yu J; Wang L; Du J Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202304692. PubMed ID: 37283024 [TBL] [Abstract][Full Text] [Related]
9. Cytosolic delivery of inhibitory antibodies with cationic lipids. Wang HH; Tsourkas A Proc Natl Acad Sci U S A; 2019 Oct; 116(44):22132-22139. PubMed ID: 31611380 [TBL] [Abstract][Full Text] [Related]
10. Finding ways into the cytosol: Peptide-mediated approaches for delivering proteins into cells. Kawaguchi Y; Futaki S Curr Opin Chem Biol; 2024 Aug; 81():102482. PubMed ID: 38905721 [TBL] [Abstract][Full Text] [Related]
11. HOPS-dependent endosomal fusion required for efficient cytosolic delivery of therapeutic peptides and small proteins. Steinauer A; LaRochelle JR; Knox SL; Wissner RF; Berry S; Schepartz A Proc Natl Acad Sci U S A; 2019 Jan; 116(2):512-521. PubMed ID: 30610181 [TBL] [Abstract][Full Text] [Related]
12. Genetic and Covalent Protein Modification Strategies to Facilitate Intracellular Delivery. Horn JM; Obermeyer AC Biomacromolecules; 2021 Dec; 22(12):4883-4904. PubMed ID: 34855385 [TBL] [Abstract][Full Text] [Related]
13. Endosomal escape efficiency of fusogenic B18 and B55 peptides fused with anti-EGFR single chain Fv as estimated by nuclear translocation. Niikura K; Horisawa K; Doi N J Biochem; 2016 Jan; 159(1):123-32. PubMed ID: 26338729 [TBL] [Abstract][Full Text] [Related]
14. Development of plug-and-deliverable intracellular protein delivery platforms based on botulinum neurotoxin. Park SG; Lee HB; Kang S Int J Biol Macromol; 2024 Mar; 261(Pt 1):129622. PubMed ID: 38266854 [TBL] [Abstract][Full Text] [Related]
15. Endosomal escape pathways for delivery of biologicals. Varkouhi AK; Scholte M; Storm G; Haisma HJ J Control Release; 2011 May; 151(3):220-8. PubMed ID: 21078351 [TBL] [Abstract][Full Text] [Related]
16. Tailoring Hyperbranched Poly(β-amino ester) as a Robust and Universal Platform for Cytosolic Protein Delivery. Liu X; Zhao Z; Wu F; Chen Y; Yin L Adv Mater; 2022 Feb; 34(8):e2108116. PubMed ID: 34894367 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the Cytosolic Uptake of HaloTag Using a pH-Sensitive Dye. Giancola JB; Grimm JB; Jun JV; Petri YD; Lavis LD; Raines RT ACS Chem Biol; 2024 Apr; 19(4):908-915. PubMed ID: 38525961 [TBL] [Abstract][Full Text] [Related]
18. Tricyclic cell-penetrating peptides for efficient delivery of functional antibodies into cancer cells. Tietz O; Cortezon-Tamarit F; Chalk R; Able S; Vallis KA Nat Chem; 2022 Mar; 14(3):284-293. PubMed ID: 35145246 [TBL] [Abstract][Full Text] [Related]
19. Targeting the undruggable: emerging technologies in antibody delivery against intracellular targets. Niamsuphap S; Fercher C; Kumble S; Huda P; Mahler SM; Howard CB Expert Opin Drug Deliv; 2020 Sep; 17(9):1189-1211. PubMed ID: 32524851 [TBL] [Abstract][Full Text] [Related]
20. Endosome-disruptive peptides for improving cytosolic delivery of bioactive macromolecules. Nakase I; Kobayashi S; Futaki S Biopolymers; 2010; 94(6):763-70. PubMed ID: 20564044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]