These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 34227899)
21. Metal Interactions in the Ni Hyperaccumulating Population of Fasani E; Zamboni A; Sorio D; Furini A; DalCorso G Biology (Basel); 2023 Dec; 12(12):. PubMed ID: 38132363 [TBL] [Abstract][Full Text] [Related]
22. Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous 'Ganges' in field trials. Jacobs A; Drouet T; Sterckeman T; Noret N Environ Sci Pollut Res Int; 2017 Mar; 24(9):8176-8188. PubMed ID: 28144868 [TBL] [Abstract][Full Text] [Related]
23. A bisphosphonate increasing the shoot biomass of the metal hyperaccumulator Noccaea caerulescens. Alanne AL; Peräniemi S; Turhanen P; Tuomainen M; Vepsäläinen J; Tervahauta A Chemosphere; 2014 Jan; 95():566-71. PubMed ID: 24182405 [TBL] [Abstract][Full Text] [Related]
24. Induction of Nickel Accumulation in Response to Zinc Deficiency in Arabidopsis thaliana. Nishida S; Kato A; Tsuzuki C; Yoshida J; Mizuno T Int J Mol Sci; 2015 Apr; 16(5):9420-30. PubMed ID: 25923075 [TBL] [Abstract][Full Text] [Related]
25. De novo transcriptome assemblies of four accessions of the metal hyperaccumulator plant Noccaea caerulescens. Blande D; Halimaa P; Tervahauta AI; Aarts MG; Kärenlampi SO Sci Data; 2017 Jan; 4():160131. PubMed ID: 28140388 [TBL] [Abstract][Full Text] [Related]
26. Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens. Kozhevnikova AD; Seregin IV; Erlikh NT; Shevyreva TA; Andreev IM; Verweij R; Schat H New Phytol; 2014 Jul; 203(2):508-519. PubMed ID: 24750120 [TBL] [Abstract][Full Text] [Related]
27. Micro-edaphic factors affect intra-specific variations in trace element profiles of Noccaea praecox on ultramafic soils. Mišljenović T; Jakovljević K; Jovanović S; Mihailović N; Gajić B; Tomović G Environ Sci Pollut Res Int; 2018 Nov; 25(31):31737-31751. PubMed ID: 30215206 [TBL] [Abstract][Full Text] [Related]
28. Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. Ó Lochlainn S; Bowen HC; Fray RG; Hammond JP; King GJ; White PJ; Graham NS; Broadley MR PLoS One; 2011 Mar; 6(3):e17814. PubMed ID: 21423774 [TBL] [Abstract][Full Text] [Related]
29. Comparative transcriptome analysis of the metal hyperaccumulator Noccaea caerulescens. Halimaa P; Blande D; Aarts MG; Tuomainen M; Tervahauta A; Kärenlampi S Front Plant Sci; 2014; 5():213. PubMed ID: 24904610 [TBL] [Abstract][Full Text] [Related]
30. ESEM-EDS: In vivo characterization of the Ni hyperaccumulator Noccaea caerulescens. Mattarozzi M; Visioli G; Sanangelantoni AM; Careri M Micron; 2015 Aug; 75():18-26. PubMed ID: 25984895 [TBL] [Abstract][Full Text] [Related]
31. Transcription profiling of the metal-hyperaccumulator Thlaspi caerulescens (J. & C. PRESL). Plessl M; Rigola D; Hassinen V; Aarts MG; Schat H Z Naturforsch C J Biosci; 2005; 60(3-4):216-23. PubMed ID: 15948586 [TBL] [Abstract][Full Text] [Related]
32. AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Nishida S; Tsuzuki C; Kato A; Aisu A; Yoshida J; Mizuno T Plant Cell Physiol; 2011 Aug; 52(8):1433-42. PubMed ID: 21742768 [TBL] [Abstract][Full Text] [Related]
33. Induction of IRT1 by the nickel-induced iron-deficient response in Arabidopsis. Nishida S; Aisu A; Mizuno T Plant Signal Behav; 2012 Mar; 7(3):329-31. PubMed ID: 22476458 [TBL] [Abstract][Full Text] [Related]
34. Transcriptome Response of Metallicolous and a Non-Metallicolous Ecotypes of Domka A; Rozpądek P; Ważny R; Jędrzejczyk RJ; Hubalewska-Mazgaj M; Gonnelli C; Benny J; Martinelli F; Puschenreiter M; Turnau K Plants (Basel); 2020 Jul; 9(8):. PubMed ID: 32731524 [TBL] [Abstract][Full Text] [Related]
35. Imaging Zn and Ni distributions in leaves of different ages of the hyperaccumulator Noccaea caerulescens by synchrotron-based X-ray fluorescence. do Nascimento CWA; Hesterberg D; Tappero R J Hazard Mater; 2021 Apr; 408():124813. PubMed ID: 33385722 [TBL] [Abstract][Full Text] [Related]
36. Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation. Milner MJ; Craft E; Yamaji N; Koyama E; Ma JF; Kochian LV New Phytol; 2012 Jul; 195(1):113-23. PubMed ID: 22524643 [TBL] [Abstract][Full Text] [Related]
37. Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure. Bayçu G; Gevrek-Kürüm N; Moustaka J; Csatári I; Rognes SE; Moustakas M Environ Sci Pollut Res Int; 2017 Jan; 24(3):2840-2850. PubMed ID: 27838905 [TBL] [Abstract][Full Text] [Related]
38. Interference of nickel with copper and iron homeostasis contributes to metal toxicity symptoms in the nickel hyperaccumulator plant Alyssum inflatum. Ghasemi R; Ghaderian SM; Krämer U New Phytol; 2009 Nov; 184(3):566-580. PubMed ID: 19691676 [TBL] [Abstract][Full Text] [Related]
39. The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions. Tlustoš P; Břendová K; Száková J; Najmanová J; Koubová K Int J Phytoremediation; 2016; 18(2):110-5. PubMed ID: 26280307 [TBL] [Abstract][Full Text] [Related]
40. Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data. Cecchi L; Gabbrielli R; Arnetoli M; Gonnelli C; Hasko A; Selvi F Ann Bot; 2010 Nov; 106(5):751-67. PubMed ID: 20724306 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]