BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 34228191)

  • 21. An insight to conserved water molecular dynamics of catalytic and structural Zn(+2) ions in matrix metalloproteinase 13 of human.
    Chakrabarti B; Bairagya HR; Mallik P; Mukhopadhyay BP; Bera A
    J Biomol Struct Dyn; 2011 Feb; 28(4):503-16. PubMed ID: 21142220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peptide-based selective inhibitors of matrix metalloproteinase-mediated activities.
    Ndinguri MW; Bhowmick M; Tokmina-Roszyk D; Robichaud TK; Fields GB
    Molecules; 2012 Nov; 17(12):14230-48. PubMed ID: 23201642
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural basis for matrix metalloproteinase 1-catalyzed collagenolysis.
    Bertini I; Fragai M; Luchinat C; Melikian M; Toccafondi M; Lauer JL; Fields GB
    J Am Chem Soc; 2012 Feb; 134(4):2100-10. PubMed ID: 22239621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The interface between catalytic and hemopexin domains in matrix metalloproteinase-1 conceals a collagen binding exosite.
    Arnold LH; Butt LE; Prior SH; Read CM; Fields GB; Pickford AR
    J Biol Chem; 2011 Dec; 286(52):45073-82. PubMed ID: 22030392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Matrix metalloproteinase interactions with collagen and elastin.
    Van Doren SR
    Matrix Biol; 2015; 44-46():224-31. PubMed ID: 25599938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determining the Substrate Specificity of Matrix Metalloproteases using Fluorogenic Peptide Substrates.
    Stawikowski MJ; Knapinska AM; Fields GB
    Methods Mol Biol; 2017; 1579():137-183. PubMed ID: 28299736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Matrix metalloproteinases and collagen catabolism.
    Lauer-Fields JL; Juska D; Fields GB
    Biopolymers; 2002; 66(1):19-32. PubMed ID: 12228918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New biochemical insight of conserved water molecules at catalytic and structural Zn
    Chakrabarti B; Bairagya HR; Mukhopadhyay BP; Sekar K
    J Mol Model; 2017 Feb; 23(2):57. PubMed ID: 28161785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New strategies for targeting matrix metalloproteinases.
    Fields GB
    Matrix Biol; 2015; 44-46():239-46. PubMed ID: 25595836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbamoylphosphonate-based matrix metalloproteinase inhibitor metal complexes: solution studies and stability constants. Towards a zinc-selective binding group.
    Farkas E; Katz Y; Bhusare S; Reich R; Röschenthaler GV; Königsmann M; Breuer E
    J Biol Inorg Chem; 2004 Apr; 9(3):307-15. PubMed ID: 14762707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular dynamics simulation study on the interaction of collagen-like peptides with gelatinase-A (MMP-2).
    Azhagiya Singam ER; Rajapandian V; Subramanian V
    Biopolymers; 2014 Jul; 101(7):779-94. PubMed ID: 24374600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical and Biological Attributes of Matrix Metalloproteinases.
    Cui N; Hu M; Khalil RA
    Prog Mol Biol Transl Sci; 2017; 147():1-73. PubMed ID: 28413025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and functional role of invariant water molecules in matrix metalloproteinases: a data-mining approach.
    Kumar H; Mandal SK; Gogoi P; Kanaujia SP
    J Biomol Struct Dyn; 2022; 40(20):10074-10085. PubMed ID: 34121627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates.
    Stawikowski MJ; Stawikowska R; Fields GB
    Biochemistry; 2015 May; 54(19):3110-21. PubMed ID: 25897652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of collagen charge clusters in the modulation of matrix metalloproteinase activity.
    Lauer JL; Bhowmick M; Tokmina-Roszyk D; Lin Y; Van Doren SR; Fields GB
    J Biol Chem; 2014 Jan; 289(4):1981-92. PubMed ID: 24297171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The recognition of collagen and triple-helical toolkit peptides by MMP-13: sequence specificity for binding and cleavage.
    Howes JM; Bihan D; Slatter DA; Hamaia SW; Packman LC; Knauper V; Visse R; Farndale RW
    J Biol Chem; 2014 Aug; 289(35):24091-101. PubMed ID: 25008319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of zinc-dependent enzymes by metal carrier proteins.
    Thompson MW
    Biometals; 2022 Apr; 35(2):187-213. PubMed ID: 35192096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differentiation of secreted and membrane-type matrix metalloproteinase activities based on substitutions and interruptions of triple-helical sequences.
    Minond D; Lauer-Fields JL; Cudic M; Overall CM; Pei D; Brew K; Moss ML; Fields GB
    Biochemistry; 2007 Mar; 46(12):3724-33. PubMed ID: 17338550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interstitial collagen catabolism.
    Fields GB
    J Biol Chem; 2013 Mar; 288(13):8785-93. PubMed ID: 23430258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biophysical studies of matrix metalloproteinase/triple-helix complexes.
    Fields GB
    Adv Protein Chem Struct Biol; 2014; 97():37-48. PubMed ID: 25458354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.