These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 34228292)

  • 1. Highly Multiplexed Analysis of CRISPR Genome Editing Outcomes in Mammalian Cells.
    Ishiguro S; Yachie N
    Methods Mol Biol; 2021; 2312():193-223. PubMed ID: 34228292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Control of Genome Editing by Photoactivatable Cas9.
    Otabe T; Nihongaki Y; Sato M
    Methods Mol Biol; 2021; 2312():225-233. PubMed ID: 34228293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas gene therapy.
    Zhang B
    J Cell Physiol; 2021 Apr; 236(4):2459-2481. PubMed ID: 32959897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise Regulation of Cas9-Mediated Genome Engineering by Anti-CRISPR-Based Inducible CRISPR Controllers.
    Jain S; Xun G; Abesteh S; Ho S; Lingamaneni M; Martin TA; Tasan I; Yang C; Zhao H
    ACS Synth Biol; 2021 Jun; 10(6):1320-1327. PubMed ID: 34006094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing CRISPR/Cas9 technology in cardiovascular disease.
    Rezaei H; Khadempar S; Farahani N; Hosseingholi EZ; Hayat SMG; Sathyapalan T; Sahebkar AH
    Trends Cardiovasc Med; 2020 Feb; 30(2):93-101. PubMed ID: 30935726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review.
    Ebrahimi V; Hashemi A
    Gene; 2020 Aug; 753():144813. PubMed ID: 32470504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target-Specific Precision of CRISPR-Mediated Genome Editing.
    Chakrabarti AM; Henser-Brownhill T; Monserrat J; Poetsch AR; Luscombe NM; Scaffidi P
    Mol Cell; 2019 Feb; 73(4):699-713.e6. PubMed ID: 30554945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9-Mediated Gene Silencing in Cultured Human Epithelia.
    Gago S; Overton NLD; Bowyer P
    Methods Mol Biol; 2021; 2260():37-47. PubMed ID: 33405030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient genome editing in pathogenic mycobacteria using Streptococcus thermophilus CRISPR1-Cas9.
    Meijers AS; Troost R; Ummels R; Maaskant J; Speer A; Nejentsev S; Bitter W; Kuijl CP
    Tuberculosis (Edinb); 2020 Sep; 124():101983. PubMed ID: 32829077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 System and its Research Progress in Gene Therapy.
    Liu W; Yang C; Liu Y; Jiang G
    Anticancer Agents Med Chem; 2019; 19(16):1912-1919. PubMed ID: 31633477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Directed Gene Editing Catalyzes Precise Gene Segment Replacement
    Sansbury BM; Wagner AM; Tarcic G; Barth S; Nitzan E; Goldfus R; Vidne M; Kmiec EB
    CRISPR J; 2019 Apr; 2():121-132. PubMed ID: 30998096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining genome-wide CRISPR-Cas genome-editing nuclease activity with GUIDE-seq.
    Malinin NL; Lee G; Lazzarotto CR; Li Y; Zheng Z; Nguyen NT; Liebers M; Topkar VV; Iafrate AJ; Le LP; Aryee MJ; Joung JK; Tsai SQ
    Nat Protoc; 2021 Dec; 16(12):5592-5615. PubMed ID: 34773119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Off- and on-target effects of genome editing in mouse embryos.
    Ayabe S; Nakashima K; Yoshiki A
    J Reprod Dev; 2019 Feb; 65(1):1-5. PubMed ID: 30518723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexed Genome Engineering with Cas12a.
    Weisbach NR; Meijs A; Platt RJ
    Methods Mol Biol; 2021; 2312():171-192. PubMed ID: 34228291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential Activation of Guide RNAs to Enable Successive CRISPR-Cas9 Activities.
    Clarke R; Terry AR; Pennington H; Hasty C; MacDougall MS; Regan M; Merrill BJ
    Mol Cell; 2021 Jan; 81(2):226-238.e5. PubMed ID: 33378644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-induced indels and base editing using the Staphylococcus aureus Cas9 in potato.
    Veillet F; Kermarrec MP; Chauvin L; Chauvin JE; Nogué F
    PLoS One; 2020; 15(8):e0235942. PubMed ID: 32804931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining CRISPR-Cas9 genome-wide nuclease activities with CIRCLE-seq.
    Lazzarotto CR; Nguyen NT; Tang X; Malagon-Lopez J; Guo JA; Aryee MJ; Joung JK; Tsai SQ
    Nat Protoc; 2018 Nov; 13(11):2615-2642. PubMed ID: 30341435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.