These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 34228448)
1. Effects of Confinement and Ion Adsorption in Ionic Liquid Supercapacitors with Nanoporous Electrodes. Lian Z; Chao H; Wang ZG ACS Nano; 2021 Jul; 15(7):11724-11733. PubMed ID: 34228448 [TBL] [Abstract][Full Text] [Related]
2. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes. Vatamanu J; Vatamanu M; Bedrov D ACS Nano; 2015 Jun; 9(6):5999-6017. PubMed ID: 26038979 [TBL] [Abstract][Full Text] [Related]
3. Molecular Insights into the Complex Relationship between Capacitance and Pore Morphology in Nanoporous Carbon-based Supercapacitors. Pak AJ; Hwang GS ACS Appl Mater Interfaces; 2016 Dec; 8(50):34659-34667. PubMed ID: 27936557 [TBL] [Abstract][Full Text] [Related]
4. Effects of Surface Transition and Adsorption on Ionic Liquid Capacitors. Chao H; Wang ZG J Phys Chem Lett; 2020 Mar; 11(5):1767-1772. PubMed ID: 32040914 [TBL] [Abstract][Full Text] [Related]
5. Carbon-carbon supercapacitors: Beyond the average pore size or how electrolyte confinement and inaccessible pores affect the capacitance. Lahrar EH; Simon P; Merlet C J Chem Phys; 2021 Nov; 155(18):184703. PubMed ID: 34773950 [TBL] [Abstract][Full Text] [Related]
6. Studies on Possible Ion-Confinement in Nanopore for Enhanced Supercapacitor Performance in 4V EMIBF Deng J; Li J; Xiao Z; Song S; Li L Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31766673 [TBL] [Abstract][Full Text] [Related]
7. Horn-like Pore Entrance Boosts Charging Dynamics and Charge Storage of Nanoporous Supercapacitors. Mo T; Peng J; Dai W; Chen M; Presser V; Feng G ACS Nano; 2023 Aug; 17(15):14974-14980. PubMed ID: 37498344 [TBL] [Abstract][Full Text] [Related]
8. Predicting ion specific capacitances of supercapacitors due to quantum ionic interactions. Parsons DF J Colloid Interface Sci; 2014 Aug; 427():67-72. PubMed ID: 24565279 [TBL] [Abstract][Full Text] [Related]
9. Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade-Off between the Concentration and the Separability of the Ions. Burt R; Breitsprecher K; Daffos B; Taberna PL; Simon P; Birkett G; Zhao XS; Holm C; Salanne M J Phys Chem Lett; 2016 Oct; 7(19):4015-4021. PubMed ID: 27661760 [TBL] [Abstract][Full Text] [Related]
10. Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations. Uralcan B; Uralcan IB ACS Appl Mater Interfaces; 2022 Apr; 14(14):16800-16808. PubMed ID: 35377144 [TBL] [Abstract][Full Text] [Related]
11. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Chmiola J; Yushin G; Gogotsi Y; Portet C; Simon P; Taberna PL Science; 2006 Sep; 313(5794):1760-3. PubMed ID: 16917025 [TBL] [Abstract][Full Text] [Related]
12. On the Atomistic Nature of Capacitance Enhancement Generated by Ionic Liquid Electrolyte Confined in Subnanometer Pores. Xing L; Vatamanu J; Borodin O; Bedrov D J Phys Chem Lett; 2013 Jan; 4(1):132-40. PubMed ID: 26291225 [TBL] [Abstract][Full Text] [Related]
13. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes? Lian C; Liu H; Henderson D; Wu J J Phys Condens Matter; 2016 Oct; 28(41):414005. PubMed ID: 27546561 [TBL] [Abstract][Full Text] [Related]
14. Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study. Shim Y; Kim HJ ACS Nano; 2010 Apr; 4(4):2345-55. PubMed ID: 20359243 [TBL] [Abstract][Full Text] [Related]
15. Effects of dilution in ionic liquid supercapacitors. Varner S; Wang ZG Phys Chem Chem Phys; 2022 Nov; 24(44):27362-27374. PubMed ID: 36330852 [TBL] [Abstract][Full Text] [Related]
16. Ionic Liquids under Confinement: From Systematic Variations of the Ion and Pore Sizes toward an Understanding of the Structure and Dynamics in Complex Porous Carbons. Lahrar EH; Belhboub A; Simon P; Merlet C ACS Appl Mater Interfaces; 2020 Jan; 12(1):1789-1798. PubMed ID: 31805764 [TBL] [Abstract][Full Text] [Related]
17. Insights into the influence of the pore size and surface area of activated carbons on the energy storage of electric double layer capacitors with a new potentially universally applicable capacitor model. Heimböckel R; Hoffmann F; Fröba M Phys Chem Chem Phys; 2019 Feb; 21(6):3122-3133. PubMed ID: 30675602 [TBL] [Abstract][Full Text] [Related]
18. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte. Vatamanu J; Borodin O; Smith GD Phys Chem Chem Phys; 2010 Jan; 12(1):170-82. PubMed ID: 20024457 [TBL] [Abstract][Full Text] [Related]
19. Relation between the ion size and pore size for an electric double-layer capacitor. Largeot C; Portet C; Chmiola J; Taberna PL; Gogotsi Y; Simon P J Am Chem Soc; 2008 Mar; 130(9):2730-1. PubMed ID: 18257568 [TBL] [Abstract][Full Text] [Related]