These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34228448)

  • 21. Effect of Pore Size Distribution on Energy Storage of Nanoporous Carbon Materials in Neat and Dilute Ionic Liquid Electrolytes.
    Käärik M; Arulepp M; Perkson A; Leis J
    Molecules; 2023 Oct; 28(20):. PubMed ID: 37894670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes.
    Kalluri RK; Biener MM; Suss ME; Merrill MD; Stadermann M; Santiago JG; Baumann TF; Biener J; Striolo A
    Phys Chem Chem Phys; 2013 Feb; 15(7):2309-20. PubMed ID: 23295944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of nonelectrostatic ion-ion interactions on double-layer capacitance.
    Zhao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051502. PubMed ID: 23214784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors.
    Lang X; Hirata A; Fujita T; Chen M
    Nat Nanotechnol; 2011 Apr; 6(4):232-6. PubMed ID: 21336267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Solvent Concentration on the Performance of Ionic-Liquid/Carbon Supercapacitors.
    Zhang Y; Cummings PT
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42680-42689. PubMed ID: 31608619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores.
    Wu P; Huang J; Meunier V; Sumpter BG; Qiao R
    J Phys Chem Lett; 2012 Jul; 3(13):1732-7. PubMed ID: 26291851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.
    Huang J; Sumpter BG; Meunier V
    Chemistry; 2008; 14(22):6614-26. PubMed ID: 18576455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the molecular origin of supercapacitance in nanoporous carbon electrodes.
    Merlet C; Rotenberg B; Madden PA; Taberna PL; Simon P; Gogotsi Y; Salanne M
    Nat Mater; 2012 Mar; 11(4):306-10. PubMed ID: 22388172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations.
    Kondrat S; Georgi N; Fedorov MV; Kornyshev AA
    Phys Chem Chem Phys; 2011 Jun; 13(23):11359-66. PubMed ID: 21566824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural disorder determines capacitance in nanoporous carbons.
    Liu X; Lyu D; Merlet C; Leesmith MJA; Hua X; Xu Z; Grey CP; Forse AC
    Science; 2024 Apr; 384(6693):321-325. PubMed ID: 38635707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic Charge Storage in Ionic Liquids-Filled Nanopores: Insight from a Computational Cyclic Voltammetry Study.
    He Y; Huang J; Sumpter BG; Kornyshev AA; Qiao R
    J Phys Chem Lett; 2015 Jan; 6(1):22-30. PubMed ID: 26263086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oscillation of capacitance inside nanopores.
    Jiang DE; Jin Z; Wu J
    Nano Lett; 2011 Dec; 11(12):5373-7. PubMed ID: 22029395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How chemical defects influence the charging of nanoporous carbon supercapacitors.
    Dupuis R; Valdenaire PL; Pellenq RJ; Ioannidou K
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2121945119. PubMed ID: 35439053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Boosting Specific Energy and Power of Carbon-Ionic Liquid Supercapacitors by Engineering Carbon Pore Structures.
    Zhang D; Gao H; Hua G; Zhou H; Wu J; Zhu B; Liu C; Yang J; Chen D
    Front Chem; 2020; 8():6. PubMed ID: 32133337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Charging dynamics of electrical double layers inside a cylindrical pore: predicting the effects of arbitrary pore size.
    Henrique F; Zuk PJ; Gupta A
    Soft Matter; 2021 Dec; 18(1):198-213. PubMed ID: 34870312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and thermodynamic properties of the electrical double layer in slit nanopores: A Monte Carlo study.
    Lamperski S
    J Chem Phys; 2020 Oct; 153(13):134703. PubMed ID: 33032423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feeling Your Neighbors across the Walls: How Interpore Ionic Interactions Affect Capacitive Energy Storage.
    Kondrat S; Vasilyev OA; Kornyshev AA
    J Phys Chem Lett; 2019 Aug; 10(16):4523-4527. PubMed ID: 31318564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbons with Regular Pore Geometry Yield Fundamental Insights into Supercapacitor Charge Storage.
    Liu YM; Merlet C; Smit B
    ACS Cent Sci; 2019 Nov; 5(11):1813-1823. PubMed ID: 31807683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanocatalyst-Assisted Fine Tailoring of Pore Structure in Holey-Graphene for Enhanced Performance in Energy Storage.
    Dutta D; Jiang JY; Jamaluddin A; He SM; Hung YH; Chen F; Chang JK; Su CY
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36560-36570. PubMed ID: 31508931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coarse-grained simulations of an ionic liquid-based capacitor: I. Density, ion size, and valency effects.
    Breitsprecher K; Košovan P; Holm C
    J Phys Condens Matter; 2014 Jul; 26(28):284108. PubMed ID: 24919407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.