These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 34229054)
1. Synthesis of Na Wang J; Dou B; Zheng L; Cao W; Zeng X; Wen Y; Ma J; Li X Bioorg Med Chem Lett; 2021 Sep; 48():128244. PubMed ID: 34229054 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics. Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of cleavable azobenzene-based affinity tags for bioorthogonal chemical proteomics. Yang YY; Grammel M; Raghavan AS; Charron G; Hang HC Chem Biol; 2010 Nov; 17(11):1212-22. PubMed ID: 21095571 [TBL] [Abstract][Full Text] [Related]
4. Small Molecule Interactome Mapping by Photo-Affinity Labeling (SIM-PAL) to Identify Binding Sites of Small Molecules on a Proteome-Wide Scale. Flaxman HA; Miyamoto DK; Woo CM Curr Protoc Chem Biol; 2019 Dec; 11(4):e75. PubMed ID: 31763793 [TBL] [Abstract][Full Text] [Related]
5. Cleavable biotin probes for labeling of biomolecules via azide-alkyne cycloaddition. Szychowski J; Mahdavi A; Hodas JJ; Bagert JD; Ngo JT; Landgraf P; Dieterich DC; Schuman EM; Tirrell DA J Am Chem Soc; 2010 Dec; 132(51):18351-60. PubMed ID: 21141861 [TBL] [Abstract][Full Text] [Related]
6. A cleavable azide resin for direct click chemistry mediated enrichment of alkyne-labeled proteins. Sibbersen C; Lykke L; Gregersen N; Jørgensen KA; Johannsen M Chem Commun (Camb); 2014 Oct; 50(81):12098-100. PubMed ID: 25168178 [TBL] [Abstract][Full Text] [Related]
7. Methods for the Detection, Study, and Dynamic Profiling of O-GlcNAc Glycosylation. Thompson JW; Griffin ME; Hsieh-Wilson LC Methods Enzymol; 2018; 598():101-135. PubMed ID: 29306432 [TBL] [Abstract][Full Text] [Related]
8. Global identification of O-GlcNAc-modified proteins. Nandi A; Sprung R; Barma DK; Zhao Y; Kim SC; Falck JR; Zhao Y Anal Chem; 2006 Jan; 78(2):452-8. PubMed ID: 16408927 [TBL] [Abstract][Full Text] [Related]
9. From mechanism to mouse: a tale of two bioorthogonal reactions. Sletten EM; Bertozzi CR Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330 [TBL] [Abstract][Full Text] [Related]
10. O-GlcNAc Site Mapping by Using a Combination of Chemoenzymatic Labeling, Copper-Free Click Chemistry, Reductive Cleavage, and Electron-Transfer Dissociation Mass Spectrometry. Ma J; Wang WH; Li Z; Shabanowitz J; Hunt DF; Hart GW Anal Chem; 2019 Feb; 91(4):2620-2625. PubMed ID: 30657688 [TBL] [Abstract][Full Text] [Related]
11. Multifluorinated Aryl Azides for the Development of Improved H Kang X; Cai X; Yi L; Xi Z Chem Asian J; 2020 May; 15(9):1420-1429. PubMed ID: 32144862 [TBL] [Abstract][Full Text] [Related]
12. Conjugation of enzymes on RNA probes through Cu(I) catalyzed alkyne-azide cycloaddition. Kitaoka M; Tanaka Y; Tada Y; Goto M; Miyawaki K; Noji S; Kamiya N Biotechnol J; 2011 Apr; 6(4):470-6. PubMed ID: 21170979 [TBL] [Abstract][Full Text] [Related]
13. An azide-modified nucleoside for metabolic labeling of DNA. Neef AB; Luedtke NW Chembiochem; 2014 Apr; 15(6):789-93. PubMed ID: 24644275 [TBL] [Abstract][Full Text] [Related]
14. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. Agard NJ; Prescher JA; Bertozzi CR J Am Chem Soc; 2004 Nov; 126(46):15046-7. PubMed ID: 15547999 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of symmetrical and unsymmetrical PAMAM dendrimers by fusion between azide- and alkyne-functionalized PAMAM dendrons. Lee JW; Kim JH; Kim HJ; Han SC; Kim JH; Shin WS; Jin SH Bioconjug Chem; 2007; 18(2):579-84. PubMed ID: 17335177 [TBL] [Abstract][Full Text] [Related]
16. Bioorthogonal Hydroamination of Push-Pull-Activated Linear Alkynes. Kang D; Cheung ST; Kim J Angew Chem Int Ed Engl; 2021 Jul; 60(31):16947-16952. PubMed ID: 34019705 [TBL] [Abstract][Full Text] [Related]
17. Direct One-Step Fluorescent Labeling of O-GlcNAc-Modified Proteins in Live Cells Using Metabolic Intermediates. Tan HY; Eskandari R; Shen D; Zhu Y; Liu TW; Willems LI; Alteen MG; Madden Z; Vocadlo DJ J Am Chem Soc; 2018 Nov; 140(45):15300-15308. PubMed ID: 30296064 [TBL] [Abstract][Full Text] [Related]
18. Enrichment of O-GlcNAc-modified peptides using novel thiol-alkyne and thiol-disulfide exchange. Tsumoto H; Ogasawara D; Hashii N; Suzuki T; Akimoto Y; Endo T; Miura Y Bioorg Med Chem Lett; 2015 Jul; 25(13):2645-9. PubMed ID: 25980911 [TBL] [Abstract][Full Text] [Related]
19. Azido-Functionalized 5' Cap Analogues for the Preparation of Translationally Active mRNAs Suitable for Fluorescent Labeling in Living Cells. Mamot A; Sikorski PJ; Warminski M; Kowalska J; Jemielity J Angew Chem Int Ed Engl; 2017 Dec; 56(49):15628-15632. PubMed ID: 29048718 [TBL] [Abstract][Full Text] [Related]
20. Quantitative analysis of O-GlcNAcylation in combination with isobaric tag labeling and chemoenzymatic enrichment. Tsumoto H; Akimoto Y; Endo T; Miura Y Bioorg Med Chem Lett; 2017 Nov; 27(22):5022-5026. PubMed ID: 29029932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]