These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 34229124)
1. Characterization of a novel isoflavone glycoside-hydrolyzing β-glucosidase from mangrove soil metagenomic library. Mai Z; Wang L; Zeng Q Biochem Biophys Res Commun; 2021 Sep; 569():61-65. PubMed ID: 34229124 [TBL] [Abstract][Full Text] [Related]
2. Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library. Li G; Jiang Y; Fan XJ; Liu YH Bioresour Technol; 2012 Nov; 123():15-22. PubMed ID: 22940294 [TBL] [Abstract][Full Text] [Related]
3. Hydrolysis of soy isoflavone glycosides by recombinant beta-glucosidase from hyperthermophile Thermotoga maritima. Xue Y; Yu J; Song X J Ind Microbiol Biotechnol; 2009 Nov; 36(11):1401-8. PubMed ID: 19693552 [TBL] [Abstract][Full Text] [Related]
4. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus. Yeom SJ; Kim BN; Kim YS; Oh DK J Agric Food Chem; 2012 Feb; 60(6):1535-41. PubMed ID: 22251001 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a β-glucosidase from Sulfolobus solfataricus for isoflavone glycosides. Kim BN; Yeom SJ; Kim YS; Oh DK Biotechnol Lett; 2012 Jan; 34(1):125-9. PubMed ID: 21898127 [TBL] [Abstract][Full Text] [Related]
6. Carbohydrate-binding module assisted purification and immobilization of β-glucosidase onto cellulose and application in hydrolysis of soybean isoflavone glycosides. Chang F; Xue S; Xie X; Fang W; Fang Z; Xiao Y J Biosci Bioeng; 2018 Feb; 125(2):185-191. PubMed ID: 29046264 [TBL] [Abstract][Full Text] [Related]
7. Characterization of four β-glucosidases acting on isoflavone-glycosides from Bifidobacterium pseudocatenulatum IPLA 36007. Guadamuro L; Flórez AB; Alegría Á; Vázquez L; Mayo B Food Res Int; 2017 Oct; 100(Pt 1):522-528. PubMed ID: 28873716 [TBL] [Abstract][Full Text] [Related]
8. Improve ethanol tolerance of β-glucosidase Bgl1A by semi-rational engineering for the hydrolysis of soybean isoflavone glycosides. Fang W; Yang Y; Zhang X; Yin Q; Zhang X; Wang X; Fang Z; Yazhong X J Biotechnol; 2016 Jun; 227():64-71. PubMed ID: 27084057 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a novel β-glucosidase from a compost microbial metagenome with strong transglycosylation activity. Uchiyama T; Miyazaki K; Yaoi K J Biol Chem; 2013 Jun; 288(25):18325-34. PubMed ID: 23661705 [TBL] [Abstract][Full Text] [Related]
11. Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones. Yan FY; Xia W; Zhang XX; Chen S; Nie XZ; Qian LC J Zhejiang Univ Sci B; 2016 Jun; 17(6):455-64. PubMed ID: 27256679 [TBL] [Abstract][Full Text] [Related]
12. Release of Soybean Isoflavones by Using a β-Glucosidase from Alicyclobacillus herbarius. Delgado L; Heckmann CM; Di Pisa F; Gourlay L; Paradisi F Chembiochem; 2021 Apr; 22(7):1223-1231. PubMed ID: 33237595 [TBL] [Abstract][Full Text] [Related]
13. Heterologous expression of a GH3 β-glucosidase from Neurospora crassa in Pichia pastoris with high purity and its application in the hydrolysis of soybean isoflavone glycosides. Pei X; Zhao J; Cai P; Sun W; Ren J; Wu Q; Zhang S; Tian C Protein Expr Purif; 2016 Mar; 119():75-84. PubMed ID: 26596358 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a novel β-glucosidase from Gongronella sp. W5 and its application in the hydrolysis of soybean isoflavone glycosides. Fang W; Song R; Zhang X; Zhang X; Zhang X; Wang X; Fang Z; Xiao Y J Agric Food Chem; 2014 Dec; 62(48):11688-95. PubMed ID: 25389558 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of a highly-active thermophilic β-glucosidase from Neosartorya fischeri P1 and its application in the hydrolysis of soybean isoflavone glycosides. Yang X; Ma R; Shi P; Huang H; Bai Y; Wang Y; Yang P; Fan Y; Yao B PLoS One; 2014; 9(9):e106785. PubMed ID: 25188254 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a GH3 family β-glucosidase from Dictyoglomus turgidum and its application to the hydrolysis of isoflavone glycosides in spent coffee grounds. Kim YS; Yeom SJ; Oh DK J Agric Food Chem; 2011 Nov; 59(21):11812-8. PubMed ID: 21919440 [TBL] [Abstract][Full Text] [Related]
17. Comparison of three thermostable β-glucosidases for application in the hydrolysis of soybean isoflavone glycosides. Song X; Xue Y; Wang Q; Wu X J Agric Food Chem; 2011 Mar; 59(5):1954-61. PubMed ID: 21294581 [TBL] [Abstract][Full Text] [Related]
18. Enrichment of two isoflavone aglycones in black soymilk by immobilized β-glucosidase on solid carriers. Chen KI; Lo YC; Su NW; Chou CC; Cheng KC J Agric Food Chem; 2012 Dec; 60(51):12540-6. PubMed ID: 23190054 [TBL] [Abstract][Full Text] [Related]
19. Biotransformation of soy flour isoflavones by Aspergillus niger NRRL 3122 β-glucosidase enzyme. Abdella A; El-Baz AF; Ibrahim IA; Mahrous EE; Yang ST Nat Prod Res; 2018 Oct; 32(20):2382-2391. PubMed ID: 29224366 [TBL] [Abstract][Full Text] [Related]
20. Cloning, expression, and characterization of two beta-glucosidases from isoflavone glycoside-hydrolyzing Bacillus subtilis natto. Kuo LC; Lee KT J Agric Food Chem; 2008 Jan; 56(1):119-25. PubMed ID: 18069788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]