BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34229304)

  • 1. Structural superlubricity in 2D van der Waals heterojunctions.
    Yuan J; Yang R; Zhang G
    Nanotechnology; 2021 Dec; 33(10):. PubMed ID: 34229304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable, Wide-Temperature, and Macroscale Superlubricity Enabled by Nanoscale Van Der Waals Heterojunction-to-Homojunction Transformation.
    Yang X; Li R; Wang Y; Zhang J
    Adv Mater; 2023 Sep; 35(39):e2303580. PubMed ID: 37354130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Prediction of Superlubric Layered Heterojunctions.
    Gao E; Wu B; Wang Y; Jia X; Ouyang W; Liu Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33600-33608. PubMed ID: 34213300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Temperature Superlubricity in MoS
    Long Y; Wang X; Tan W; Li B; Li J; Deng W; Li X; Guo W; Yin J
    Nano Lett; 2024 Jun; 24(25):7572-7577. PubMed ID: 38860969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized Scaling Law of Structural Superlubricity.
    Wang J; Cao W; Song Y; Qu C; Zheng Q; Ma M
    Nano Lett; 2019 Nov; 19(11):7735-7741. PubMed ID: 31646868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions.
    Song Y; Mandelli D; Hod O; Urbakh M; Ma M; Zheng Q
    Nat Mater; 2018 Oct; 17(10):894-899. PubMed ID: 30061730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a graphene layer probe to measure force interactions in layered heterojunctions.
    Li J; Li J; Jiang L; Luo J
    Nanoscale; 2020 Mar; 12(9):5435-5443. PubMed ID: 32080698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tribo-Induced Interfacial Material Transfer of an Atomic Force Microscopy Probe Assisting Superlubricity in a WS
    Tian J; Yin X; Li J; Qi W; Huang P; Chen X; Luo J
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4031-4040. PubMed ID: 31889443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twisting Dynamics of Large Lattice-Mismatch van der Waals Heterostructures.
    Liao M; Silva A; Du L; Nicolini P; Claerbout VEP; Kramer D; Yang R; Shi D; Polcar T; Zhang G
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19616-19623. PubMed ID: 37023057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust microscale structural superlubricity between graphite and nanostructured surface.
    Huang X; Li T; Wang J; Xia K; Tan Z; Peng D; Xiang X; Liu B; Ma M; Zheng Q
    Nat Commun; 2023 May; 14(1):2931. PubMed ID: 37217500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Unusual Tribological Properties of Graphene/Antimonene Heterojunctions: A First-Principles Investigation.
    Jiang X; Lu Z; Zhang R
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33806486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Superlubricity Based on Crystalline Materials.
    Song Y; Qu C; Ma M; Zheng Q
    Small; 2020 Apr; 16(15):e1903018. PubMed ID: 31670482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice distortion-enhanced superlubricity of (Mo, X)S
    Li P; Lu J; Wang WY; Sui X; Zou C; Zhang Y; Wang J; Lin D; Lu Z; Song H; Fan X; Hao J; Li J; Liu W
    Nanoscale; 2021 Oct; 13(38):16234-16243. PubMed ID: 34546276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sliding friction of graphene/hexagonal -boron nitride heterojunctions: a route to robust superlubricity.
    Mandelli D; Leven I; Hod O; Urbakh M
    Sci Rep; 2017 Sep; 7(1):10851. PubMed ID: 28883489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures.
    Liao M; Nicolini P; Du L; Yuan J; Wang S; Yu H; Tang J; Cheng P; Watanabe K; Taniguchi T; Gu L; Claerbout VEP; Silva A; Kramer D; Polcar T; Yang R; Shi D; Zhang G
    Nat Mater; 2022 Jan; 21(1):47-53. PubMed ID: 34354215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial friction of vdW heterostructures affected by in-plane strain.
    Zhou X; Chen P; Xu RG; Zhang C; Zhang J
    Nanotechnology; 2022 Oct; 34(1):. PubMed ID: 36174390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of interface and electronic transport in van der Waals heterojunctions by UV/O
    Ma X; Mu Y; Xie G; Wan H; Li W; Li M; Dai H; Guo B; Gong JR
    Nanotechnology; 2021 Jul; 32(41):. PubMed ID: 34198285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Robust Macroscale Superlubricity on Engineering Steel Substrate.
    Li P; Ju P; Ji L; Li H; Liu X; Chen L; Zhou H; Chen J
    Adv Mater; 2020 Sep; 32(36):e2002039. PubMed ID: 32715515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic-Scale Superlubricity in Ti
    Zhang Y; Chen X; Arramel ; Augustine KB; Zhang P; Jiang J; Wu Q; Li N
    ACS Omega; 2021 Apr; 6(13):9013-9019. PubMed ID: 33842771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of interfacial friction in commensurate graphene/h-BN heterostructures by surface functionalization.
    Guo Y; Qiu J; Guo W
    Nanoscale; 2016 Jan; 8(1):575-80. PubMed ID: 26645099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.