These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34229313)

  • 1. Enhancing directed collective motion of self-propelled particles in confined channel.
    Wang Z; Hao J; Wang X; Xu J; Yang B
    J Phys Condens Matter; 2021 Aug; 33(41):. PubMed ID: 34229313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the transport of the mixture involving active and passive rods in confined channel.
    Wang Z; Hao J
    Soft Matter; 2023 Aug; 19(33):6368-6375. PubMed ID: 37577816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defect dynamics in clusters of self-propelled rods in circular confinement.
    Wang Z; Si T; Hao J; Guan Y; Qin F; Yang B; Cao W
    Eur Phys J E Soft Matter; 2019 Nov; 42(11):150. PubMed ID: 31773335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-propelled particle transport in regular arrays of rigid asymmetric obstacles.
    Potiguar FQ; Farias GA; Ferreira WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012307. PubMed ID: 25122303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of self-propelled particles across a porous medium: trapping, clogging, and the Matthew effect.
    Shi SJ; Li HS; Feng GQ; Tian WD; Chen K
    Phys Chem Chem Phys; 2020 Jul; 22(25):14052-14060. PubMed ID: 32568323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confined Catalytic Janus Swimmers in a Crowded Channel: Geometry-Driven Rectification Transients and Directional Locking.
    Yu H; Kopach A; Misko VR; Vasylenko AA; Makarov D; Marchesoni F; Nori F; Baraban L; Cuniberti G
    Small; 2016 Nov; 12(42):5882-5890. PubMed ID: 27628242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced dynamics of active Brownian particles in periodic obstacle arrays and corrugated channels.
    Pattanayak S; Das R; Kumar M; Mishra S
    Eur Phys J E Soft Matter; 2019 May; 42(5):62. PubMed ID: 31115728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boundaries Control Collective Dynamics of Inertial Self-Propelled Robots.
    Deblais A; Barois T; Guerin T; Delville PH; Vaudaine R; Lintuvuori JS; Boudet JF; Baret JC; Kellay H
    Phys Rev Lett; 2018 May; 120(18):188002. PubMed ID: 29775342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of macroscopic directional motion of deformable active cells in confined structures.
    Ai BQ; Ma J; Zeng CH; He YF
    Phys Rev E; 2023 Feb; 107(2-1):024406. PubMed ID: 36932507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fight the flow: the role of shear in artificial rheotaxis for individual and collective motion.
    Baker R; Kauffman JE; Laskar A; Shklyaev OE; Potomkin M; Dominguez-Rubio L; Shum H; Cruz-Rivera Y; Aranson IS; Balazs AC; Sen A
    Nanoscale; 2019 Jun; 11(22):10944-10951. PubMed ID: 31139774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collective motion of binary self-propelled particle mixtures.
    Menzel AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021912. PubMed ID: 22463249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferred penetration of active nano-rods into narrow channels and their clustering.
    Wang Z; Chu KC; Tsao HK; Sheng YJ
    Phys Chem Chem Phys; 2021 Aug; 23(30):16234-16241. PubMed ID: 34308947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collective behavior of self-propelled rods with quorum sensing.
    Abaurrea Velasco C; Abkenar M; Gompper G; Auth T
    Phys Rev E; 2018 Aug; 98(2-1):022605. PubMed ID: 30253508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonequilibrium clustering of self-propelled rods.
    Peruani F; Deutsch A; Bär M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):030904. PubMed ID: 17025586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collective motion of rod-shaped self-propelled particles through collision.
    Nagai KH
    Biophys Physicobiol; 2018; 15():51-57. PubMed ID: 29607280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal noise maximizes collective motion in heterogeneous media.
    Chepizhko O; Altmann EG; Peruani F
    Phys Rev Lett; 2013 Jun; 110(23):238101. PubMed ID: 25167531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach.
    Yariv E; Schnitzer O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032115. PubMed ID: 25314403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collective behavior of penetrable self-propelled rods in two dimensions.
    Abkenar M; Marx K; Auth T; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062314. PubMed ID: 24483451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria.
    Peruani F; Starruss J; Jakovljevic V; Søgaard-Andersen L; Deutsch A; Bär M
    Phys Rev Lett; 2012 Mar; 108(9):098102. PubMed ID: 22463670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous membrane formation and self-encapsulation of active rods in an inhomogeneous motility field.
    Grauer J; Löwen H; Janssen LMC
    Phys Rev E; 2018 Feb; 97(2-1):022608. PubMed ID: 29548202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.