These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 34229384)
1. An actinomycete strain of Nocardiopsis lucentensis reduces arsenic toxicity in barley and maize. AbdElgawad H; Zinta G; Abuelsoud W; Hassan YM; Alkhalifah DHM; Hozzein WN; Zrieq R; Beemster GT; Schoenaers S J Hazard Mater; 2021 Sep; 417():126055. PubMed ID: 34229384 [TBL] [Abstract][Full Text] [Related]
2. Soil arsenic toxicity differentially impacts C3 (barley) and C4 (maize) crops under future climate atmospheric CO AbdElgawad H; Schoenaers S; Zinta G; Hassan YM; Abdel-Mawgoud M; Alkhalifah DHM; Hozzein WN; Asard H; Abuelsoud W J Hazard Mater; 2021 Jul; 414():125331. PubMed ID: 34030395 [TBL] [Abstract][Full Text] [Related]
3. Elevated CO Selim S; Abuelsoud W; Al-Sanea MM; AbdElgawad H Plant Physiol Biochem; 2021 Sep; 166():235-245. PubMed ID: 34126591 [TBL] [Abstract][Full Text] [Related]
4. Soil enrichment with actinomycete mitigates the toxicity of arsenic oxide nanoparticles on wheat and maize growth and metabolism. Selim S; AbdElgawad H; Alsharari SS; Atif M; Warrad M; Hagagy N; Madany MMY; Abuelsoud W Physiol Plant; 2021 Nov; 173(3):978-992. PubMed ID: 34237152 [TBL] [Abstract][Full Text] [Related]
5. Calcium and L-glutamate present the opposite role in managing arsenic in barley. Zeng F; Nazir MM; Ahmed T; Noman M; Ali S; Rizwan M; Alam MS; Lwalaba JLW; Zhang G Environ Pollut; 2023 Mar; 321():121141. PubMed ID: 36702433 [TBL] [Abstract][Full Text] [Related]
6. How could actinobacteria augment the growth and redox homeostasis in barley plants grown in TiO Alsiary WA; AbdElgawad H; Madany MMY Plant Physiol Biochem; 2023 Sep; 202():107943. PubMed ID: 37651952 [TBL] [Abstract][Full Text] [Related]
7. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Rizvi A; Khan MS Ecotoxicol Environ Saf; 2018 Aug; 157():9-20. PubMed ID: 29605647 [TBL] [Abstract][Full Text] [Related]
8. Modulation of growth, ascorbate-glutathione cycle and thiol metabolism in rice (Oryza sativa L. cv. MTU-1010) seedlings by arsenic and silicon. Das S; Majumder B; Biswas AK Ecotoxicology; 2018 Dec; 27(10):1387-1403. PubMed ID: 30406896 [TBL] [Abstract][Full Text] [Related]
9. Exogenous hesperidin and chlorogenic acid alleviate oxidative damage induced by arsenic toxicity in Zea mays through regulating the water status, antioxidant capacity, redox balance and fatty acid composition. Arikan B; Ozfidan-Konakci C; Yildiztugay E; Zengin G; Alp FN; Elbasan F Environ Pollut; 2022 Jan; 292(Pt B):118389. PubMed ID: 34687779 [TBL] [Abstract][Full Text] [Related]
10. Pseudochrobactrum asaccharolyticum mitigates arsenic induced oxidative stress of maize plant by enhancing water status and antioxidant defense system. Waheed Z; Iqbal S; Irfan M; Jabeen K; Umar A; Aljowaie RM; Almutairi SM; Gancarz M BMC Plant Biol; 2024 Sep; 24(1):832. PubMed ID: 39232682 [TBL] [Abstract][Full Text] [Related]
11. Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil. de Sousa A; Saleh AM; Habeeb TH; Hassan YM; Zrieq R; Wadaan MAM; Hozzein WN; Selim S; Matos M; AbdElgawad H Sci Total Environ; 2019 Nov; 693():133636. PubMed ID: 31377375 [TBL] [Abstract][Full Text] [Related]
12. Bioavailability and toxicity of arsenic in maize (Zea mays L.) grown in contaminated soils. Drličková G; Vaculík M; Matejkovič P; Lux A Bull Environ Contam Toxicol; 2013 Aug; 91(2):235-9. PubMed ID: 23775315 [TBL] [Abstract][Full Text] [Related]
13. The potential of microbes and sulfate in reducing arsenic phytoaccumulation by maize (Zea mays L.) plants. Natasha ; Bibi I; Hussain K; Amen R; Hasan IMU; Shahid M; Bashir S; Niazi NK; Mehmood T; Asghar HN; Nawaz MF; Hussain MM; Ali W Environ Geochem Health; 2021 Dec; 43(12):5037-5051. PubMed ID: 33811285 [TBL] [Abstract][Full Text] [Related]
14. Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants. Ruiz E; Rodríguez L; Alonso-Azcárate J Chemosphere; 2009 May; 75(8):1035-41. PubMed ID: 19232427 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant responses of peanut roots exposed to realistic groundwater doses of arsenate: Identification of glutathione S-transferase as a suitable biomarker for metalloid toxicity. Bianucci E; Furlan A; Tordable MDC; Hernández LE; Carpena-Ruiz RO; Castro S Chemosphere; 2017 Aug; 181():551-561. PubMed ID: 28463730 [TBL] [Abstract][Full Text] [Related]
16. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Islam F; Yasmeen T; Riaz M; Arif MS; Ali S; Raza SH Ecotoxicol Environ Saf; 2014 Dec; 110():143-52. PubMed ID: 25240234 [TBL] [Abstract][Full Text] [Related]
17. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica. Mesa V; Navazas A; González-Gil R; González A; Weyens N; Lauga B; Gallego JLR; Sánchez J; Peláez AI Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188207 [TBL] [Abstract][Full Text] [Related]
18. Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Islam F; Yasmeen T; Arif MS; Riaz M; Shahzad SM; Imran Q; Ali I Plant Physiol Biochem; 2016 Nov; 108():456-467. PubMed ID: 27575042 [TBL] [Abstract][Full Text] [Related]
19. Ameliorating arsenic and PVC microplastic stress in barley (Hordeum vulgare L.) using copper oxide nanoparticles: an environmental bioremediation approach. Alhaithloul HAS; Alghanem SMS; Alsudays IM; Abbas ZK; Al-Balawi SM; Ali B; Malik T; Javed S; Ali S; Ercisli S; Darwish DBE BMC Plant Biol; 2024 Oct; 24(1):985. PubMed ID: 39425070 [TBL] [Abstract][Full Text] [Related]
20. Arsenic-induced oxidative stress in Brassica oleracea: Multivariate and literature data analyses of physiological parameters, applied levels and plant organ type. Natasha ; Shahid M; Khalid S; Bibi I; Khalid S; Masood N; Qaisrani SA; Niazi NK; Dumat C Environ Geochem Health; 2022 Jun; 44(6):1827-1839. PubMed ID: 34524606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]