These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 34229387)
41. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process. Xiu FR; Qi Y; Zhang FS Waste Manag; 2013 May; 33(5):1251-7. PubMed ID: 23474342 [TBL] [Abstract][Full Text] [Related]
42. Cleaning of lead smelting flue gas scrubber sludge and recovery of lead, selenium and mercury by the hydrometallurgical route. Xing P; Ma B; Wang C; Chen Y Environ Technol; 2018 Jun; 39(11):1461-1469. PubMed ID: 28513298 [TBL] [Abstract][Full Text] [Related]
43. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441 [TBL] [Abstract][Full Text] [Related]
44. Galvanic sludge metals recovery by pyrometallurgical and hydrometallurgical treatment. Rossini G; Bernardes AM J Hazard Mater; 2006 Apr; 131(1-3):210-6. PubMed ID: 16297539 [TBL] [Abstract][Full Text] [Related]
45. Leaching of APC residues from secondary Pb metallurgy using single extraction tests: the mineralogical and the geochemical approach. Ettler V; Mihaljevic M; Sebek O; Strnad L J Hazard Mater; 2005 May; 121(1-3):149-57. PubMed ID: 15885416 [TBL] [Abstract][Full Text] [Related]
46. Emission of fluorescent x-radiation from non-lead based shielding materials of protective clothing: a radiobiological problem? Schmid E; Panzer W; Schlattl H; Eder H J Radiol Prot; 2012 Sep; 32(3):N129-39. PubMed ID: 22809876 [TBL] [Abstract][Full Text] [Related]
47. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process. Tanong K; Coudert L; Mercier G; Blais JF J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877 [TBL] [Abstract][Full Text] [Related]
48. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications. Jarošíková A; Ettler V; Mihaljevič M; Kříbek B; Mapani B J Environ Manage; 2017 Feb; 187():178-186. PubMed ID: 27889660 [TBL] [Abstract][Full Text] [Related]
49. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Fan B; Chen X; Zhou T; Zhang J; Xu B Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340 [TBL] [Abstract][Full Text] [Related]
50. Antimony and arsenic leaching from secondary lead smelter air-pollution-control residues. Ettler V; Mihaljevic M; Sebek O Waste Manag Res; 2010 Jul; 28(7):587-95. PubMed ID: 19723825 [TBL] [Abstract][Full Text] [Related]
51. Controls on metal leaching from secondary Pb smelter air-pollution-control residues. Ettler V; Sebek O; Grygar T; Klementová M; Bezdicka P; Slavíková H Environ Sci Technol; 2008 Nov; 42(21):7878-84. PubMed ID: 19031875 [TBL] [Abstract][Full Text] [Related]
52. Recovery of metals from waste printed circuit boards by selective leaching combined with cyclone electrowinning process. Guo X; Qin H; Tian Q; Li D J Hazard Mater; 2020 Feb; 384():121355. PubMed ID: 31629590 [TBL] [Abstract][Full Text] [Related]
53. A green recycling process of the spent lead paste from discarded lead-acid battery by a hydrometallurgical process. Zhu X; Zhang W; Zhang L; Zuo Q; Yang J; Han L Waste Manag Res; 2019 May; 37(5):508-515. PubMed ID: 30808267 [TBL] [Abstract][Full Text] [Related]
54. Efficient Separation and Purification Method for Recovering Valuable Elements from Bismuth Telluride Refrigeration Chip Waste. Zhu J; Wang G; Zhu W; Ou L; Zheng L; Zhang J; Chen J; Pan J; Wang R ACS Omega; 2023 Oct; 8(42):39222-39232. PubMed ID: 37901560 [TBL] [Abstract][Full Text] [Related]
55. Studies on leaching characteristics of electronic waste for metal recovery using inorganic and organic acids and base. Das D; Mukherjee S; Chaudhuri MG Waste Manag Res; 2021 Feb; 39(2):242-249. PubMed ID: 32564701 [TBL] [Abstract][Full Text] [Related]
56. Characteristics of element distributions in an MSW ash melting treatment system. Sekito T; Dote Y; Onoue K; Sakanakura H; Nakamura K Waste Manag; 2014 Sep; 34(9):1637-43. PubMed ID: 24863626 [TBL] [Abstract][Full Text] [Related]
57. Dissolution of Metals in Different Bromide-Based Systems: Electrochemical Measurements and Spectroscopic Investigations. Varvara S; Dorneanu SA; Okos A; Muresan LM; Bostan R; Popa M; Marconi D; Ilea P Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824443 [TBL] [Abstract][Full Text] [Related]
58. Speciation of PM10 sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters. Batonneau Y; Bremard C; Gengembre L; Laureyns J; Le Maguer A; Le Maguer D; Perdrix E; Sobanska S Environ Sci Technol; 2004 Oct; 38(20):5281-9. PubMed ID: 15543727 [TBL] [Abstract][Full Text] [Related]
59. Leaching behaviour and environmental risk assessment of heavy metals from electronic solder in acidified soil. Lao X; Cheng C; Min X; Zhao J; Zhou D; Li X Environ Sci Pollut Res Int; 2015 Nov; 22(22):17683-90. PubMed ID: 26154035 [TBL] [Abstract][Full Text] [Related]
60. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon. Li M; Peng B; Chai L; Peng N; Yan H; Hou D J Hazard Mater; 2012 Oct; 237-238():323-30. PubMed ID: 22975260 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]