These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 34229412)
41. Fate of a perfluoroalkyl acid mixture in an agricultural soil studied in lysimeters. McLachlan MS; Felizeter S; Klein M; Kotthoff M; De Voogt P Chemosphere; 2019 May; 223():180-187. PubMed ID: 30776763 [TBL] [Abstract][Full Text] [Related]
42. Perfluoroalkyl acids (PFAAs) in sediments from rivers of the Pearl River Delta, southern China. Liu B; Zhang H; Li J; Dong W; Xie L Environ Monit Assess; 2017 May; 189(5):213. PubMed ID: 28401367 [TBL] [Abstract][Full Text] [Related]
43. Per- and polyfluoroalkyl substance (PFAS) retention by colloidal activated carbon (CAC) using dynamic column experiments. Niarchos G; Ahrens L; Kleja DB; Fagerlund F Environ Pollut; 2022 Sep; 308():119667. PubMed ID: 35750303 [TBL] [Abstract][Full Text] [Related]
44. Per- and polyfluoroalkyl substances (PFAS) as contaminants in groundwater resources - A comprehensive review of subsurface transport processes. Rasmusson K; Fagerlund F Chemosphere; 2024 Aug; 362():142663. PubMed ID: 38908440 [TBL] [Abstract][Full Text] [Related]
45. Comparison of point-source pollutant loadings to soil and groundwater for 72 chemical substances. Yu S; Hwang SI; Yun ST; Chae G; Lee D; Kim KE Environ Sci Pollut Res Int; 2017 Nov; 24(32):24816-24843. PubMed ID: 28913678 [TBL] [Abstract][Full Text] [Related]
46. A screening model for predicting the potential of soil colloids-enhanced leaching of hydrophobic organic contaminants to groundwater at contaminated sites. Duan L; Liu J; Wang J; Jiang C; Zhang T; Chen W J Environ Sci (China); 2025 Apr; 150():309-317. PubMed ID: 39306406 [TBL] [Abstract][Full Text] [Related]
47. Examining the link between terrestrial and aquatic phosphorus speciation in a subtropical catchment: the role of selective erosion and transport of fine sediments during storm events. Kerr JG; Burford MA; Olley JM; Bunn SE; Udy J Water Res; 2011 May; 45(11):3331-40. PubMed ID: 21529880 [TBL] [Abstract][Full Text] [Related]
48. Residues, bioaccumulations and biomagnification of perfluoroalkyl acids (PFAAs) in aquatic animals from Lake Chaohu, China. Liu W; He W; Wu J; Qin N; He Q; Xu F Environ Pollut; 2018 Sep; 240():607-614. PubMed ID: 29763864 [TBL] [Abstract][Full Text] [Related]
49. Influence of Water Concentrations of Perfluoroalkyl Acids (PFAAs) on Their Size-Resolved Enrichment in Nascent Sea Spray Aerosols. Sha B; Johansson JH; Benskin JP; Cousins IT; Salter ME Environ Sci Technol; 2021 Jul; 55(14):9489-9497. PubMed ID: 32859129 [TBL] [Abstract][Full Text] [Related]
50. Sorbent assisted immobilisation of perfluoroalkyl acids in soils - effect on leaching and bioavailability. Bräunig J; Baduel C; Barnes CM; Mueller JF J Hazard Mater; 2021 Jun; 412():125171. PubMed ID: 33529830 [TBL] [Abstract][Full Text] [Related]
51. Sequestration and bioavailability of perfluoroalkyl acids (PFAAs) in soils: Implications for their underestimated risk. Zhao L; Zhu L; Zhao S; Ma X Sci Total Environ; 2016 Dec; 572():169-176. PubMed ID: 27497034 [TBL] [Abstract][Full Text] [Related]
52. Enhanced Extraction of AFFF-Associated PFASs from Source Zone Soils. Nickerson A; Maizel AC; Kulkarni PR; Adamson DT; Kornuc JJ; Higgins CP Environ Sci Technol; 2020 Apr; 54(8):4952-4962. PubMed ID: 32200626 [TBL] [Abstract][Full Text] [Related]
53. Perfluoroalkyl acids (PFAAs) in riverine and coastal sediments of Laizhou Bay, North China. Zhao Z; Tang J; Xie Z; Chen Y; Pan X; Zhong G; Sturm R; Zhang G; Ebinghaus R Sci Total Environ; 2013 Mar; 447():415-23. PubMed ID: 23410863 [TBL] [Abstract][Full Text] [Related]
54. Perfluoroalkyl acids in the Canadian environment: multi-media assessment of current status and trends. Gewurtz SB; Backus SM; De Silva AO; Ahrens L; Armellin A; Evans M; Fraser S; Gledhill M; Guerra P; Harner T; Helm PA; Hung H; Khera N; Kim MG; King M; Lee SC; Letcher RJ; Martin P; Marvin C; McGoldrick DJ; Myers AL; Pelletier M; Pomeroy J; Reiner EJ; Rondeau M; Sauve MC; Sekela M; Shoeib M; Smith DW; Smyth SA; Struger J; Spry D; Syrgiannis J; Waltho J Environ Int; 2013 Sep; 59():183-200. PubMed ID: 23831544 [TBL] [Abstract][Full Text] [Related]
55. Occurrence and transport of perfluoroalkyl acids (PFAAs), including short-chain PFAAs in Tangxun Lake, China. Zhou Z; Liang Y; Shi Y; Xu L; Cai Y Environ Sci Technol; 2013 Aug; 47(16):9249-57. PubMed ID: 23883102 [TBL] [Abstract][Full Text] [Related]
56. Model-based identification of vadose zone controls on PFAS mobility under semi-arid climate conditions. Wallis I; Hutson J; Davis G; Kookana R; Rayner J; Prommer H Water Res; 2022 Oct; 225():119096. PubMed ID: 36162294 [TBL] [Abstract][Full Text] [Related]
57. Release of poly- and perfluoroalkyl substances from finished biosolids in soil mesocosms. Schaefer CE; Hooper J; Modiri-Gharehveran M; Drennan DM; Beecher N; Lee L Water Res; 2022 Jun; 217():118405. PubMed ID: 35417820 [TBL] [Abstract][Full Text] [Related]
58. Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India. Kumar M; Ramanathan AL; Rahman MM; Naidu R Sci Total Environ; 2016 Dec; 573():1103-1114. PubMed ID: 27643742 [TBL] [Abstract][Full Text] [Related]
59. Spatial Trends of Anionic, Zwitterionic, and Cationic PFASs at an AFFF-Impacted Site. Nickerson A; Rodowa AE; Adamson DT; Field JA; Kulkarni PR; Kornuc JJ; Higgins CP Environ Sci Technol; 2021 Jan; 55(1):313-323. PubMed ID: 33351591 [TBL] [Abstract][Full Text] [Related]
60. Particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids during the haze period in the megacity of Shanghai. Guo M; Lyu Y; Xu T; Yao B; Song W; Li M; Yang X; Cheng T; Li X Environ Pollut; 2018 Mar; 234():9-19. PubMed ID: 29154207 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]