BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 34229818)

  • 1. Antibacterial Activities of Biosynthesized ZnO Nanoparticles Using Leaf and Fruit Extracts of
    Gharpure S; Yadwade R; Mehmood S; Ankamwar B
    J Nanosci Nanotechnol; 2021 Dec; 21(12):6168-6182. PubMed ID: 34229818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of antimicrobial and antioxidant activity of zinc oxide nanoparticles biosynthesized with Ziziphus spina-christi leaf extracts.
    Shnawa BH; Jalil PJ; Al-Ezzi A; Mhamedsharif RM; Mohammed DA; Biro DM; Ahmed MH
    J Environ Sci Health C Toxicol Carcinog; 2024; 42(2):93-108. PubMed ID: 38105670
    [No Abstract]   [Full Text] [Related]  

  • 3. Biosynthesis and antibacterial activity of ZnO nanoparticles using
    Jabbar KQ; Barzinjy AA
    Nanotechnology; 2024 Apr; 35(26):. PubMed ID: 38527365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Papaya peel extract-mediated green synthesis of zinc oxide nanoparticles and determination of their antioxidant, antibacterial, and photocatalytic properties.
    Easmin S; Bhattacharyya M; Pal K; Das P; Sahu R; Nandi G; Dewanjee S; Paul P; Haydar MS; Roy S; Dua TK
    Bioprocess Biosyst Eng; 2024 Jan; 47(1):65-74. PubMed ID: 38086975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro influence of PEG functionalized ZnO-CuO nanocomposites on bacterial growth.
    Jayanetti M; Thambiliyagodage C; Liyanaarachchi H; Ekanayake G; Mendis A; Usgodaarachchi L
    Sci Rep; 2024 Jan; 14(1):1293. PubMed ID: 38221550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase variation of manganese oxide in the MnO@ZnO nanocomposite with calcination temperature and its effect on structural and biological activities.
    Basak S; Haydar MS; Sikdar S; Ali S; Mondal M; Shome A; Sarkar K; Roy S; Roy MN
    Sci Rep; 2023 Dec; 13(1):21542. PubMed ID: 38057479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced antibacterial activity of capped zinc oxide nanoparticles: A step towards the control of clinical bovine mastitis.
    Hozyen HF; Ibrahim ES; Khairy EA; El-Dek SI
    Vet World; 2019 Aug; 12(8):1225-1232. PubMed ID: 31641301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc Oxide Nanoparticles Promise Anticancer and Antibacterial Activity in Ovarian Cancer.
    Mousa AB; Moawad R; Abdallah Y; Abdel-Rasheed M; Zaher AMA
    Pharm Res; 2023 Oct; 40(10):2281-2290. PubMed ID: 37016170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu
    Rojas-Jaimes J; Asmat-Campos D
    Sci Rep; 2023 Dec; 13(1):21478. PubMed ID: 38052801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Green Synthesis of Co
    Tadesse G; Ananda Murthy HC; Ravikumar CR; Naveen Kumar T; Teshome L; Desalegn T
    Bioinorg Chem Appl; 2023; 2023():5019838. PubMed ID: 38075557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano artificial periosteum PCL/Ta/ZnO accelerates repair of periosteum via antibacterial, promoting vascularization and osteogenesis.
    Liu W; Zhang K; Nan J; Lei P; Sun Y; Hu Y
    Biomater Adv; 2023 Nov; 154():213624. PubMed ID: 37716333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Antibacterial Activities of Korean Pine (
    Zhang Y; Chung WK; Moon SH; Lee JG; Om AS
    Molecules; 2023 Dec; 29(1):. PubMed ID: 38202748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the Complex Interactions: Machine Learning Approaches to Predict Bacterial Survival against ZnO and Lanthanum-Doped ZnO Nanoparticles.
    Navarro-López DE; Perfecto-Avalos Y; Zavala A; de Luna MA; Sanchez-Martinez A; Ceballos-Sanchez O; Tiwari N; López-Mena ER; Sanchez-Ante G
    Antibiotics (Basel); 2024 Feb; 13(3):. PubMed ID: 38534655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of some inorganic metal oxide nanoparticles to control
    Nazem AM; Shaala EKA; Awad SA
    Open Vet J; 2024 Jan; 14(1):545-552. PubMed ID: 38633155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive metal oxide nanoparticles from some common fruit wastes and
    Mahmoudi G; Sufimahmoudi E; Sajadi SM
    Food Sci Nutr; 2020 Oct; 8(10):5521-5531. PubMed ID: 33133554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Composition Analysis of
    Danaie E; Masoudi S; Masnabadi N
    Iran J Pharm Res; 2023; 22(1):e137839. PubMed ID: 38148889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of ZnO Micro-Flowers Prepared via Solution Process and their Antibacterial Activity.
    Wahab R; Kim YS; Mishra A; Yun SI; Shin HS
    Nanoscale Res Lett; 2010 Aug; 5(10):1675-81. PubMed ID: 21076675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. White-Light-Activated Antibacterial Surfaces Generated by Synergy between Zinc Oxide Nanoparticles and Crystal Violet.
    Ozkan E; Allan E; Parkin IP
    ACS Omega; 2018 Mar; 3(3):3190-3199. PubMed ID: 30023864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytotoxic, Antibacterial, and Antioxidant Activities of the Leaf Extract of
    Chen PJ; Lin ES; Su HH; Huang CY
    Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840206
    [No Abstract]   [Full Text] [Related]  

  • 20. Integrated Computational and Experimental Framework for Inverse Screening of Candidate Antibacterial Nanomedicine.
    Zheng JJ; Wang X; Li Z; Shen X; Wei G; Xia P; Zhou YG; Wei H; Gao X
    ACS Nano; 2024 Jan; 18(2):1531-1542. PubMed ID: 38164912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.