BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34230469)

  • 1. A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes.
    Ma L; Zhang C; Zhang B; Tang F; Li F; Liao Q; Tang D; Peng Z; Jia Y; Gao M; Guo H; Zhang J; Luo X; Yang H; Gao D; Lucas WJ; Li C; Huang S; Shang Y
    Nat Commun; 2021 Jul; 12(1):4142. PubMed ID: 34230469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of self-compatible diploid potato by knockout of S-RNase.
    Ye M; Peng Z; Tang D; Yang Z; Li D; Xu Y; Zhang C; Huang S
    Nat Plants; 2018 Sep; 4(9):651-654. PubMed ID: 30104651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allelic diversity of S-RNase alleles in diploid potato species.
    Dzidzienyo DK; Bryan GJ; Wilde G; Robbins TP
    Theor Appl Genet; 2016 Oct; 129(10):1985-2001. PubMed ID: 27497984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato.
    Eggers EJ; van der Burgt A; van Heusden SAW; de Vries ME; Visser RGF; Bachem CWB; Lindhout P
    Nat Commun; 2021 Jul; 12(1):4141. PubMed ID: 34230471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata.
    Sun L; Kao TH
    Plant Reprod; 2018 Jun; 31(2):129-143. PubMed ID: 29192328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Approaches to Overcome Self-Incompatibility in Diploid Potatoes.
    Kardile HB; Yilma S; Sathuvalli V
    Plants (Basel); 2022 May; 11(10):. PubMed ID: 35631752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward the development of highly homozygous diploid potato lines using the self-compatibility controlling Sli gene.
    Phumichai C; Mori M; Kobayashi A; Kamijima O; Hosaka K
    Genome; 2005 Dec; 48(6):977-84. PubMed ID: 16391667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-incompatibility in Petunia inflata: the relationship between a self-incompatibility locus F-box protein and its non-self S-RNases.
    Sun P; Kao TH
    Plant Cell; 2013 Feb; 25(2):470-85. PubMed ID: 23444333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the Prunus-Specific S-RNase-Based Self-Incompatibility System from a Genome-Wide Analysis of the Evolutionary Radiation of S Locus-Related F-box Genes.
    Akagi T; Henry IM; Morimoto T; Tao R
    Plant Cell Physiol; 2016 Jun; 57(6):1281-94. PubMed ID: 27081098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome analysis reveals the same 17 S-locus F-box genes in two haplotypes of the self-incompatibility locus of Petunia inflata.
    Williams JS; Der JP; dePamphilis CW; Kao TH
    Plant Cell; 2014 Jul; 26(7):2873-88. PubMed ID: 25070642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origin and widespread occurrence of Sli-based self-compatibility in potato.
    Clot CR; Polzer C; Prodhomme C; Schuit C; Engelen CJM; Hutten RCB; van Eck HJ
    Theor Appl Genet; 2020 Sep; 133(9):2713-2728. PubMed ID: 32514711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of citrus.
    Liang M; Yang W; Su S; Fu L; Yi H; Chen C; Deng X; Chai L
    Mol Genet Genomics; 2017 Apr; 292(2):325-341. PubMed ID: 27933381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence analysis of the Petunia inflata S-locus region containing 17 S-Locus F-Box genes and the S-RNase gene involved in self-incompatibility.
    Wu L; Williams JS; Sun L; Kao TH
    Plant J; 2020 Dec; 104(5):1348-1368. PubMed ID: 33048387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic potentials of the S-locus F-box proteins contribute to the pollen S specificity in self-incompatibility in Petunia hybrida.
    Li J; Zhang Y; Song Y; Zhang H; Fan J; Li Q; Zhang D; Xue Y
    Plant J; 2017 Jan; 89(1):45-57. PubMed ID: 27569591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of a wide-range of S-RNases by S locus F-box like 2, a general-inhibitor candidate in the Prunus-specific S-RNase-based self-incompatibility system.
    Matsumoto D; Tao R
    Plant Mol Biol; 2016 Jul; 91(4-5):459-69. PubMed ID: 27071402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of inbred progenies of diploid potatoes using an S-locus inhibitor (Sli) gene, and their characterization.
    Birhman RK; Hosaka K
    Genome; 2000 Jun; 43(3):495-502. PubMed ID: 10902714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the pollen determinant of S-RNase-mediated self-incompatibility.
    Sijacic P; Wang X; Skirpan AL; Wang Y; Dowd PE; McCubbin AG; Huang S; Kao TH
    Nature; 2004 May; 429(6989):302-5. PubMed ID: 15152253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A farnesyl pyrophosphate synthase gene expressed in pollen functions in S-RNase-independent unilateral incompatibility.
    Qin X; Li W; Liu Y; Tan M; Ganal M; Chetelat RT
    Plant J; 2018 Feb; 93(3):417-430. PubMed ID: 29206320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylation of the S f locus in almond is associated with S-RNase loss of function.
    Fernández i Martí A; Gradziel TM; Socias i Company R
    Plant Mol Biol; 2014 Dec; 86(6):681-9. PubMed ID: 25326263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collaborative non-self recognition system in S-RNase-based self-incompatibility.
    Kubo K; Entani T; Takara A; Wang N; Fields AM; Hua Z; Toyoda M; Kawashima S; Ando T; Isogai A; Kao TH; Takayama S
    Science; 2010 Nov; 330(6005):796-9. PubMed ID: 21051632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.