BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34230518)

  • 1. Enhancement of the thermoelectric properties in bilayer graphene structures induced by Fano resonances.
    Briones-Torres JA; Pérez-Álvarez R; Molina-Valdovinos S; Rodríguez-Vargas I
    Sci Rep; 2021 Jul; 11(1):13872. PubMed ID: 34230518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoelectric properties of nanostructured systems based on narrow armchair graphene nanoribbons.
    Hozana C; Latgé A
    J Phys Condens Matter; 2019 Mar; 31(12):125303. PubMed ID: 30654349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fano resonances in bilayer graphene superlattices.
    Briones-Torres JA; Rodríguez-Vargas I
    Sci Rep; 2017 Dec; 7(1):16708. PubMed ID: 29196690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of the thermoelectric figure of merit in DNA-like systems induced by Fano and Dicke effects.
    Fu HH; Gu L; Wu DD; Zhang ZQ
    Phys Chem Chem Phys; 2015 Apr; 17(16):11077-87. PubMed ID: 25826287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons.
    Deng S; Li L; Guy OJ; Zhang Y
    Phys Chem Chem Phys; 2019 Aug; 21(33):18161-18169. PubMed ID: 31389445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoelectric properties of periodic quantum structures in the Wigner-Rode formalism.
    Kommini A; Aksamija Z
    J Phys Condens Matter; 2018 Jan; 30(4):044004. PubMed ID: 29231841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the thermoelectric performance of graphene nano-ribbons without degrading the electronic properties.
    Tran VT; Saint-Martin J; Dollfus P; Volz S
    Sci Rep; 2017 May; 7(1):2313. PubMed ID: 28539598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seebeck Coefficient of a Single van der Waals Junction in Twisted Bilayer Graphene.
    Mahapatra PS; Sarkar K; Krishnamurthy HR; Mukerjee S; Ghosh A
    Nano Lett; 2017 Nov; 17(11):6822-6827. PubMed ID: 28841026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic and thermal transport study of sinusoidally corrugated nanowires aiming to improve thermoelectric efficiency.
    Park KH; Martin PN; Ravaioli U
    Nanotechnology; 2016 Jan; 27(3):035401. PubMed ID: 26650977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basic concepts of quantum interference and electron transport in single-molecule electronics.
    Lambert CJ
    Chem Soc Rev; 2015 Feb; 44(4):875-88. PubMed ID: 25255961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Transport and Thermoelectric Effect in Composites of Alumina and Graphene-Augmented Alumina Nanofibers.
    Saffar Shamshirgar A; Belmonte M; Tewari GC; Rojas Hernández RE; Seitsonen J; Ivanov R; Karppinen M; Miranzo P; Hussainova I
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.
    Chien YY; Yuan H; Wang CR; Lee WL
    Sci Rep; 2016 Feb; 6():20402. PubMed ID: 26852799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoelectric properties of gapped bilayer graphene.
    Suszalski D; Rut G; Rycerz A
    J Phys Condens Matter; 2019 Oct; 31(41):415501. PubMed ID: 31242476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoelectric effects in graphene nanostructures.
    Dollfus P; Hung Nguyen V; Saint-Martin J
    J Phys Condens Matter; 2015 Apr; 27(13):133204. PubMed ID: 25779989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the thermoelectric transport properties of graphyne by the first-principles method.
    Wang XM; Mo DC; Lu SS
    J Chem Phys; 2013 May; 138(20):204704. PubMed ID: 23742497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Thermoelectric Performance of As-Grown Suspended Graphene Nanoribbons.
    Li QY; Feng T; Okita W; Komori Y; Suzuki H; Kato T; Kaneko T; Ikuta T; Ruan X; Takahashi K
    ACS Nano; 2019 Aug; 13(8):9182-9189. PubMed ID: 31411858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometrically Enhanced Thermoelectric Effects in Graphene Nanoconstrictions.
    Harzheim A; Spiece J; Evangeli C; McCann E; Falko V; Sheng Y; Warner JH; Briggs GAD; Mol JA; Gehring P; Kolosov OV
    Nano Lett; 2018 Dec; 18(12):7719-7725. PubMed ID: 30418781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning phononic and electronic contributions of thermoelectric in defected S-shape graphene nanoribbons.
    Bazrafshan MA; Khoeini F
    Sci Rep; 2022 Nov; 12(1):18419. PubMed ID: 36319726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoelectric properties of two-dimensional magnet CrI
    Sheng H; Zhu Y; Bai D; Wu X; Wang J
    Nanotechnology; 2020 Jul; 31(31):315713. PubMed ID: 32311678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin-Seebeck effect and thermoelectric properties of one-dimensional graphene-like nanoribbons periodically embedded with four- and eight-membered rings.
    Xiong L; Gong B; Peng Z; Yu Z
    Phys Chem Chem Phys; 2021 Oct; 23(41):23667-23672. PubMed ID: 34642712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.