These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34230536)

  • 1. High-resolution particle separation by inertial focusing in high aspect ratio curved microfluidics.
    Cruz J; Hjort K
    Sci Rep; 2021 Jul; 11(1):13959. PubMed ID: 34230536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The upper limit and lift force within inertial focusing in high aspect ratio curved microfluidics.
    Cruz J; Hjort K
    Sci Rep; 2021 Mar; 11(1):6473. PubMed ID: 33742075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elasto-inertial focusing and particle migration in high aspect ratio microchannels for high-throughput separation.
    Tanriverdi S; Cruz J; Habibi S; Amini K; Costa M; Lundell F; Mårtensson G; Brandt L; Tammisola O; Russom A
    Microsyst Nanoeng; 2024; 10():87. PubMed ID: 38919163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial microfluidics in contraction-expansion microchannels: A review.
    Jiang D; Ni C; Tang W; Huang D; Xiang N
    Biomicrofluidics; 2021 Jul; 15(4):041501. PubMed ID: 34262632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High throughput viscoelastic particle focusing and separation in spiral microchannels.
    Kumar T; Ramachandraiah H; Iyengar SN; Banerjee I; Mårtensson G; Russom A
    Sci Rep; 2021 Apr; 11(1):8467. PubMed ID: 33875755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Inertial Focusing of Micrometer- and Sub-Micrometer-Sized Particles Separation.
    Wang L; Dandy DS
    Adv Sci (Weinh); 2017 Oct; 4(10):1700153. PubMed ID: 29051857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillatory inertial focusing in infinite microchannels.
    Mutlu BR; Edd JF; Toner M
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7682-7687. PubMed ID: 29991599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamentals of Differential Particle Inertial Focusing in Symmetric Sinusoidal Microchannels.
    Zhang J; Yuan D; Zhao Q; Teo AJT; Yan S; Ooi CH; Li W; Nguyen NT
    Anal Chem; 2019 Mar; 91(6):4077-4084. PubMed ID: 30669838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamentals of elasto-inertial particle focusing in curved microfluidic channels.
    Xiang N; Zhang X; Dai Q; Cheng J; Chen K; Ni Z
    Lab Chip; 2016 Jul; 16(14):2626-35. PubMed ID: 27300118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elasto-Inertial Focusing Mechanisms of Particles in Shear-Thinning Viscoelastic Fluid in Rectangular Microchannels.
    Naderi MM; Barilla L; Zhou J; Papautsky I; Peng Z
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dean flow-coupled inertial focusing in curved channels.
    Ramachandraiah H; Ardabili S; Faridi AM; Gantelius J; Kowalewski JM; Mårtensson G; Russom A
    Biomicrofluidics; 2014 May; 8(3):034117. PubMed ID: 25379077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of microscale particle focusing in diluted and whole blood using particle trajectory analysis.
    Lim EJ; Ober TJ; Edd JF; McKinley GH; Toner M
    Lab Chip; 2012 Jun; 12(12):2199-210. PubMed ID: 22382737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review of Secondary Flow in Inertial Microfluidics.
    Zhao Q; Yuan D; Zhang J; Li W
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamentals and applications of inertial microfluidics: a review.
    Zhang J; Yan S; Yuan D; Alici G; Nguyen NT; Ebrahimi Warkiani M; Li W
    Lab Chip; 2016 Jan; 16(1):10-34. PubMed ID: 26584257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamentals of inertial focusing in microchannels.
    Zhou J; Papautsky I
    Lab Chip; 2013 Mar; 13(6):1121-32. PubMed ID: 23353899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of Lagrangian Modeling of Particle Motion in a Spiral Microchannel for Inertial Microfluidics.
    Rasooli R; Çetin B
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inertial Focusing and Separation of Particles in Similar Curved Channels.
    Ying Y; Lin Y
    Sci Rep; 2019 Nov; 9(1):16575. PubMed ID: 31719582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.