These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 34230733)
21. An SEQAIHR model to study COVID-19 transmission and optimal control strategies in Hong Kong, 2022. Saha P; Biswas SK; Biswas MHA; Ghosh U Nonlinear Dyn; 2023; 111(7):6873-6893. PubMed ID: 36644569 [TBL] [Abstract][Full Text] [Related]
22. Basic reproduction number and predicted trends of coronavirus disease 2019 epidemic in the mainland of China. Li Y; Wang LW; Peng ZH; Shen HB Infect Dis Poverty; 2020 Jul; 9(1):94. PubMed ID: 32678056 [TBL] [Abstract][Full Text] [Related]
23. Dynamical Analysis of COVID-19 Model Incorporating Environmental Factors. Kumari P; Singh S; Singh HP Iran J Sci Technol Trans A Sci; 2022; 46(6):1651-1666. PubMed ID: 36466051 [TBL] [Abstract][Full Text] [Related]
24. Mathematical modeling for COVID-19 transmission dynamics: A case study in Ethiopia. Kifle ZS; Obsu LL Results Phys; 2022 Mar; 34():105191. PubMed ID: 35070650 [TBL] [Abstract][Full Text] [Related]
25. Modeling the transmission of second-wave COVID-19 caused by imported cases: A case study. Guo Y; Li T Math Methods Appl Sci; 2022 Sep; 45(13):8096-8114. PubMed ID: 35464831 [TBL] [Abstract][Full Text] [Related]
26. Mathematical modeling of COVID-19 transmission: the roles of intervention strategies and lockdown. Bugalia S; Bajiya VP; Tripathi JP; Li MT; Sun GQ Math Biosci Eng; 2020 Sep; 17(5):5961-5986. PubMed ID: 33120585 [TBL] [Abstract][Full Text] [Related]
27. Booster Dose Vaccination and Dynamics of COVID-19 Pandemic in the Fifth Wave: An Efficient and Simple Mathematical Model for Disease Progression. Theparod T; Kreabkhontho P; Teparos W Vaccines (Basel); 2023 Mar; 11(3):. PubMed ID: 36992172 [TBL] [Abstract][Full Text] [Related]
28. Mathematical modeling of vaccination as a control measure of stress to fight COVID-19 infections. Paul JN; Mbalawata IS; Mirau SS; Masandawa L Chaos Solitons Fractals; 2023 Jan; 166():112920. PubMed ID: 36440088 [TBL] [Abstract][Full Text] [Related]
29. Modeling the dynamics of COVID-19 in the presence of Delta and Omicron variants with vaccination and non-pharmaceutical interventions. Saha S; Saha AK Heliyon; 2023 Jul; 9(7):e17900. PubMed ID: 37539217 [TBL] [Abstract][Full Text] [Related]
30. Optimal control problem arising from COVID-19 transmission model with rapid-test. Aldila D; Shahzad M; Khoshnaw SHA; Ali M; Sultan F; Islamilova A; Anwar YR; Samiadji BM Results Phys; 2022 Jun; 37():105501. PubMed ID: 35469343 [TBL] [Abstract][Full Text] [Related]
31. Public healthcare system capacity during COVID-19: A computational case study of SARS-CoV-2. Batabyal S; Batabyal A Health Sci Rep; 2021 Jun; 4(2):e305. PubMed ID: 34136660 [TBL] [Abstract][Full Text] [Related]
32. Impact of climate on COVID-19 transmission: A study over Indian states. Manik S; Mandal M; Pal S; Patra S; Acharya S Environ Res; 2022 Aug; 211():113110. PubMed ID: 35307373 [TBL] [Abstract][Full Text] [Related]
33. Fractional dynamical probes in COVID-19 model with control interventions: a comparative assessment of eight most affected countries. Pitchaimani M; Saranya Devi A Eur Phys J Plus; 2022; 137(3):370. PubMed ID: 35340782 [TBL] [Abstract][Full Text] [Related]
34. The modeling and analysis of the COVID-19 pandemic with vaccination and isolation: a case study of Italy. Sheng Y; Cui JA; Guo S Math Biosci Eng; 2023 Jan; 20(3):5966-5992. PubMed ID: 36896559 [TBL] [Abstract][Full Text] [Related]
35. Optimal control strategies for dengue fever spread in Johor, Malaysia. Abidemi A; Aziz NAB Comput Methods Programs Biomed; 2020 Nov; 196():105585. PubMed ID: 32554024 [TBL] [Abstract][Full Text] [Related]
36. Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain. Li T; Guo Y Physica A; 2022 Nov; 606():128134. PubMed ID: 36039105 [TBL] [Abstract][Full Text] [Related]
37. Mathematical assessment of the dynamics of novel coronavirus infection with treatment: A fractional study. Liu X; Ullah S; Alshehri A; Altanji M Chaos Solitons Fractals; 2021 Dec; 153():111534. PubMed ID: 34751202 [TBL] [Abstract][Full Text] [Related]
38. Third wave of COVID-19: mathematical model with optimal control strategy for reducing the disease burden in Nigeria. Omede BI; Odionyenma UB; Ibrahim AA; Bolaji B Int J Dyn Control; 2023; 11(1):411-427. PubMed ID: 35761828 [TBL] [Abstract][Full Text] [Related]
39. Stability analysis and simulation of the novel Corornavirus mathematical model via the Caputo fractional-order derivative: A case study of Algeria. Moussa YEH; Boudaoui A; Ullah S; Bozkurt F; Abdeljawad T; Alqudah MA Results Phys; 2021 Jul; 26():104324. PubMed ID: 34055583 [TBL] [Abstract][Full Text] [Related]
40. Estimation and optimal control of the multiscale dynamics of Covid-19: a case study from Cameroon. Fotsa-Mbogne DJ; Tchoumi SY; Kouakep-Tchaptchie Y; Kamla VC; Kamgang JC; Houpa-Danga DE; Bowong-Tsakou S; Bekolle D Nonlinear Dyn; 2021; 106(3):2703-2738. PubMed ID: 34697521 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]