These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34230871)

  • 1. Global Changes in Secondary Atmospheric Pollutants During the 2020 COVID-19 Pandemic.
    Gaubert B; Bouarar I; Doumbia T; Liu Y; Stavrakou T; Deroubaix A; Darras S; Elguindi N; Granier C; Lacey F; Müller JF; Shi X; Tilmes S; Wang T; Brasseur GP
    J Geophys Res Atmos; 2021 Apr; 126(8):e2020JD034213. PubMed ID: 34230871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions.
    Sokhi RS; Singh V; Querol X; Finardi S; Targino AC; Andrade MF; Pavlovic R; Garland RM; Massagué J; Kong S; Baklanov A; Ren L; Tarasova O; Carmichael G; Peuch VH; Anand V; Arbilla G; Badali K; Beig G; Belalcazar LC; Bolignano A; Brimblecombe P; Camacho P; Casallas A; Charland JP; Choi J; Chourdakis E; Coll I; Collins M; Cyrys J; da Silva CM; Di Giosa AD; Di Leo A; Ferro C; Gavidia-Calderon M; Gayen A; Ginzburg A; Godefroy F; Gonzalez YA; Guevara-Luna M; Haque SM; Havenga H; Herod D; Hõrrak U; Hussein T; Ibarra S; Jaimes M; Kaasik M; Khaiwal R; Kim J; Kousa A; Kukkonen J; Kulmala M; Kuula J; La Violette N; Lanzani G; Liu X; MacDougall S; Manseau PM; Marchegiani G; McDonald B; Mishra SV; Molina LT; Mooibroek D; Mor S; Moussiopoulos N; Murena F; Niemi JV; Noe S; Nogueira T; Norman M; Pérez-Camaño JL; Petäjä T; Piketh S; Rathod A; Reid K; Retama A; Rivera O; Rojas NY; Rojas-Quincho JP; San José R; Sánchez O; Seguel RJ; Sillanpää S; Su Y; Tapper N; Terrazas A; Timonen H; Toscano D; Tsegas G; Velders GJM; Vlachokostas C; von Schneidemesser E; Vpm R; Yadav R; Zalakeviciute R; Zavala M
    Environ Int; 2021 Dec; 157():106818. PubMed ID: 34425482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ozone pollution in the North China Plain spreading into the late-winter haze season.
    Li K; Jacob DJ; Liao H; Qiu Y; Shen L; Zhai S; Bates KH; Sulprizio MP; Song S; Lu X; Zhang Q; Zheng B; Zhang Y; Zhang J; Lee HC; Kuk SK
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33649215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of changes in climate, land use, and emissions on global ozone air quality by mid-21st century following selected Shared Socioeconomic Pathways.
    Bhattarai H; Tai APK; Val Martin M; Yung DHY
    Sci Total Environ; 2024 Jan; 906():167759. PubMed ID: 37832689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Response of PM
    Shang YJ; Mao YH; Liao H; Hu JL; Zou ZY
    Huan Jing Ke Xue; 2023 Aug; 44(8):4250-4261. PubMed ID: 37694620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Relevancy of Observed Ozone Increase during COVID-19 Lockdown to Summertime Ozone and PM
    Kang M; Zhang J; Zhang H; Ying Q
    Environ Sci Technol Lett; 2021 Apr; 8(4):289-294. PubMed ID: 37566348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Projected ozone trends and changes in the ozone-precursor relationship in the South Coast Air Basin in response to varying reductions of precursor emissions.
    Fujita EM; Campbell DE; Stockwell WR; Saunders E; Fitzgerald R; Perea R
    J Air Waste Manag Assoc; 2016 Feb; 66(2):201-14. PubMed ID: 26514212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozone response modeling to NOx and VOC emissions: Examining machine learning models.
    Kuo CP; Fu JS
    Environ Int; 2023 Jun; 176():107969. PubMed ID: 37201398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation capacity changes in the atmosphere of large urban areas in Europe: Modelling and experimental campaigns in atmospheric simulation chambers.
    Jung D; Soler R; de la Paz D; Notario A; Muñoz A; Ródenas M; Vera T; Borrás E; Borge R
    Chemosphere; 2023 Nov; 341():139919. PubMed ID: 37611775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attributing Increases in Ozone to Accelerated Oxidation of Volatile Organic Compounds at Reduced Nitrogen Oxides Concentrations.
    Zhang Z; Jiang J; Lu B; Meng X; Herrmann H; Chen J; Li X
    PNAS Nexus; 2022 Nov; 1(5):pgac266. PubMed ID: 36712335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the ozone-nitrogen oxide-volatile organic compound sensitivity of Mexico City through an indicator-based approach: measurements and numerical simulations comparison.
    Torres-Jardón R; García-Reynoso JA; Jazcilevich A; Ruiz-Suárez LG; Keener TC
    J Air Waste Manag Assoc; 2009 Oct; 59(10):1155-72. PubMed ID: 19842324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observations of ozone, acyl peroxy nitrates, and their precursors during summer 2019 at Carlsbad Caverns National Park, New Mexico.
    Pollack IB; Pan D; Marsavin A; Cope EJ; Juncosa Calahorrano J; Naimie L; Benedict KB; Sullivan AP; Zhou Y; Sive BC; Prenni AJ; Schichtel BA; Collett J; Fischer EV
    J Air Waste Manag Assoc; 2023 Dec; 73(12):951-968. PubMed ID: 37850745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-World Vehicle Emissions Characterization for the Shing Mun Tunnel in Hong Kong and Fort McHenry Tunnel in the United States.
    Wang X; Khlystov A; Ho KF; Campbell D; Chow JC; Kohl SD; Watson JG; Lee SF; Chen LA; Lu M; Ho SSH
    Res Rep Health Eff Inst; 2019 Mar; 2019(199):5-52. PubMed ID: 31663714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Past and future ozone trends in California's South Coast Air Basin: reconciliation of ambient measurements with past and projected emission inventories.
    Fujita EM; Campbell DE; Stockwell WR; Lawson DR
    J Air Waste Manag Assoc; 2013 Jan; 63(1):54-69. PubMed ID: 23447864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of NOx on secondary organic aerosol concentrations.
    Lane TE; Donahue NM; Pandis SN
    Environ Sci Technol; 2008 Aug; 42(16):6022-7. PubMed ID: 18767660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photochemical modeling in California with two chemical mechanisms: model intercomparison and response to emission reductions.
    Cai C; Kelly JT; Avise JC; Kaduwela AP; Stockwell WR
    J Air Waste Manag Assoc; 2011 May; 61(5):559-72. PubMed ID: 21608496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China.
    Li K; Jacob DJ; Liao H; Shen L; Zhang Q; Bates KH
    Proc Natl Acad Sci U S A; 2019 Jan; 116(2):422-427. PubMed ID: 30598435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of anthropogenic emissions and boundary conditions on multi-model simulations of major air pollutants over Europe and North America in the framework of AQMEII3.
    Im U; Christensen JH; Geels C; Hansen KM; Brandt J; Solazzo E; Alyuz U; Balzarini A; Baro R; Bellasio R; Bianconi R; Bieser J; Colette A; Curci G; Farrow A; Flemming J; Fraser A; Jimenez-Guerrero P; Kitwiroon N; Liu P; Nopmongcol U; Palacios-Peña L; Pirovano G; Pozzoli L; Prank M; Rose R; Sokhi R; Tuccella P; Unal A; Vivanco MG; Yarwood G; Hogrefe C; Galmarini S
    Atmos Chem Phys; 2018; 18(12):8929-8952. PubMed ID: 30147714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VOC emission caps constrained by air quality targets based on response surface model: A case study in the Pearl River Delta Region, China.
    Hu Y; Shi B; Yuan X; Zheng C; Sha Q; Yu Y; Huang Z; Zheng J
    J Environ Sci (China); 2023 Jan; 123():430-445. PubMed ID: 36522004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis.
    Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG
    J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.