These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. SARS-CoV-2 Spike Furin Cleavage Site and S2' Basic Residues Modulate the Entry Process in a Host Cell-Dependent Manner. Lavie M; Dubuisson J; Belouzard S J Virol; 2022 Jul; 96(13):e0047422. PubMed ID: 35678602 [TBL] [Abstract][Full Text] [Related]
4. The furin protease cleavage recognition sequence of Sindbis virus PE2 can mediate virion attachment to cell surface heparan sulfate. Klimstra WB; Heidner HW; Johnston RE J Virol; 1999 Aug; 73(8):6299-306. PubMed ID: 10400721 [TBL] [Abstract][Full Text] [Related]
5. SARS-CoV-2 strategically mimics proteolytic activation of human ENaC. Anand P; Puranik A; Aravamudan M; Venkatakrishnan AJ; Soundararajan V Elife; 2020 May; 9():. PubMed ID: 32452762 [TBL] [Abstract][Full Text] [Related]
6. Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives. Tandon R; Sharp JS; Zhang F; Pomin VH; Ashpole NM; Mitra D; McCandless MG; Jin W; Liu H; Sharma P; Linhardt RJ J Virol; 2021 Jan; 95(3):. PubMed ID: 33173010 [TBL] [Abstract][Full Text] [Related]
7. Evidence of a putative glycosaminoglycan binding site on the glycosylated SARS-CoV-2 spike protein N-terminal domain. Schuurs ZP; Hammond E; Elli S; Rudd TR; Mycroft-West CJ; Lima MA; Skidmore MA; Karlsson R; Chen YH; Bagdonaite I; Yang Z; Ahmed YA; Richard DJ; Turnbull J; Ferro V; Coombe DR; Gandhi NS Comput Struct Biotechnol J; 2021; 19():2806-2818. PubMed ID: 33968333 [TBL] [Abstract][Full Text] [Related]
8. Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Based Novel Epitopes Induce Potent Immune Responses Vishwakarma P; Yadav N; Rizvi ZA; Khan NA; Chiranjivi AK; Mani S; Bansal M; Dwivedi P; Shrivastava T; Kumar R; Awasthi A; Ahmed S; Samal S Front Immunol; 2021; 12():613045. PubMed ID: 33841395 [TBL] [Abstract][Full Text] [Related]
10. The SARS-CoV-2 spike N-terminal domain engages 9- Tomris I; Unione L; Nguyen L; Zaree P; Bouwman KM; Liu L; Li Z; Fok JA; Ríos Carrasco M; van der Woude R; Kimpel ALM; Linthorst MW; Verpalen ECJM; Caniels TG; Sanders RW; Heesters BA; Pieters RJ; Jiménez-Barbero J; Klassen JS; Boons GJ; de Vries RP bioRxiv; 2022 Oct; ():. PubMed ID: 36263070 [TBL] [Abstract][Full Text] [Related]
11. The expression of hACE2 receptor protein and its involvement in SARS-CoV-2 entry, pathogenesis, and its application as potential therapeutic target. Al-Zaidan L; Mestiri S; Raza A; Merhi M; Inchakalody VP; Fernandes Q; Taib N; Uddin S; Dermime S Tumour Biol; 2021; 43(1):177-196. PubMed ID: 34420993 [TBL] [Abstract][Full Text] [Related]
12. SARS-CoV-2 evolved variants optimize binding to cellular glycocalyx. Kim SH; Kearns FL; Rosenfeld MA; Votapka L; Casalino L; Papanikolas M; Amaro RE; Freeman R Cell Rep Phys Sci; 2023 Apr; 4(4):101346. PubMed ID: 37077408 [TBL] [Abstract][Full Text] [Related]
13. The Role of Furin in the Pathogenesis of COVID-19-Associated Neurological Disorders. Ayyubova G; Gychka SG; Nikolaienko SI; Alghenaim FA; Teramoto T; Shults NV; Suzuki YJ Life (Basel); 2024 Feb; 14(2):. PubMed ID: 38398788 [TBL] [Abstract][Full Text] [Related]
15. Identification of the Receptor-Binding Domain of the Spike Glycoprotein of Human Betacoronavirus HKU1. Qian Z; Ou X; Góes LG; Osborne C; Castano A; Holmes KV; Dominguez SR J Virol; 2015 Sep; 89(17):8816-27. PubMed ID: 26085157 [TBL] [Abstract][Full Text] [Related]
16. Functional analysis of polymorphisms at the S1/S2 site of SARS-CoV-2 spike protein. Arora P; Sidarovich A; Graichen L; Hörnich B; Hahn A; Hoffmann M; Pöhlmann S PLoS One; 2022; 17(3):e0265453. PubMed ID: 35333910 [TBL] [Abstract][Full Text] [Related]
17. Static all-atom energetic mappings of the SARS-Cov-2 spike protein and dynamic stability analysis of "Up" versus "Down" protomer states. Peters MH; Bastidas O; Kokron DS; Henze CE PLoS One; 2020; 15(11):e0241168. PubMed ID: 33170884 [TBL] [Abstract][Full Text] [Related]
18. COVID infection in 4 steps: Thermodynamic considerations reveal how viral mucosal diffusion, target receptor affinity and furin cleavage act in concert to drive the nature and degree of infection in human COVID-19 disease. Popovic M; Martin JH; Head RJ Heliyon; 2023 Jun; 9(6):e17174. PubMed ID: 37325453 [TBL] [Abstract][Full Text] [Related]
19. Heparan Sulfate Facilitates Spike Protein-Mediated SARS-CoV-2 Host Cell Invasion and Contributes to Increased Infection of SARS-CoV-2 G614 Mutant and in Lung Cancer. Yue J; Jin W; Yang H; Faulkner J; Song X; Qiu H; Teng M; Azadi P; Zhang F; Linhardt RJ; Wang L Front Mol Biosci; 2021; 8():649575. PubMed ID: 34179075 [TBL] [Abstract][Full Text] [Related]
20. Heparan sulfate proteoglycans as attachment factor for SARS-CoV-2. Liu L; Chopra P; Li X; Bouwman KM; Tompkins SM; Wolfert MA; de Vries RP; Boons GJ bioRxiv; 2021 Jan; ():. PubMed ID: 32511404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]