BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 34230991)

  • 1. Neurovascular regulation in diabetic retinopathy and emerging therapies.
    Ji L; Tian H; Webster KA; Li W
    Cell Mol Life Sci; 2021 Aug; 78(16):5977-5985. PubMed ID: 34230991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secretogranin III: a diabetic retinopathy-selective angiogenic factor.
    Li W; Webster KA; LeBlanc ME; Tian H
    Cell Mol Life Sci; 2018 Feb; 75(4):635-647. PubMed ID: 28856381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secretogranin III Selectively Promotes Vascular Leakage in the Deep Vascular Plexus of Diabetic Retinopathy.
    Ji L; Waduge P; Wu Y; Huang C; Kaur A; Oliveira P; Tian H; Zhang J; Stout JT; Weng CY; Webster KA; Li W
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secretogranin III as a disease-associated ligand for antiangiogenic therapy of diabetic retinopathy.
    LeBlanc ME; Wang W; Chen X; Caberoy NB; Guo F; Shen C; Ji Y; Tian H; Wang H; Chen R; Li W
    J Exp Med; 2017 Apr; 214(4):1029-1047. PubMed ID: 28330905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurovascular abnormalities in retinopathy of prematurity and emerging therapies.
    Dai C; Xiao J; Wang C; Li W; Su G
    J Mol Med (Berl); 2022 Jun; 100(6):817-828. PubMed ID: 35394143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectively targeting disease-restricted secretogranin III to alleviate choroidal neovascularization.
    Ji L; Waduge P; Hao L; Kaur A; Wan W; Wu Y; Tian H; Zhang J; Webster KA; Li W
    FASEB J; 2022 Jan; 36(1):e22106. PubMed ID: 34918375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurovascular cross talk in diabetic retinopathy: Pathophysiological roles and therapeutic implications.
    Moran EP; Wang Z; Chen J; Sapieha P; Smith LE; Ma JX
    Am J Physiol Heart Circ Physiol; 2016 Sep; 311(3):H738-49. PubMed ID: 27473938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repression of microRNA-21 inhibits retinal vascular endothelial cell growth and angiogenesis via PTEN dependent-PI3K/Akt/VEGF signaling pathway in diabetic retinopathy.
    Lu JM; Zhang ZZ; Ma X; Fang SF; Qin XH
    Exp Eye Res; 2020 Jan; 190():107886. PubMed ID: 31759996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular endothelial growth factor-A
    Ved N; Hulse RP; Bestall SM; Donaldson LF; Bainbridge JW; Bates DO
    Clin Sci (Lond); 2017 Jun; 131(12):1225-1243. PubMed ID: 28341661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secretogranin III stringently regulates pathological but not physiological angiogenesis in oxygen-induced retinopathy.
    Dai C; Waduge P; Ji L; Huang C; He Y; Tian H; Zuniga-Sanchez E; Bhatt A; Pang IH; Su G; Webster KA; Li W
    Cell Mol Life Sci; 2022 Jan; 79(1):63. PubMed ID: 35006382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative ligandomics implicates secretogranin III as a disease-restricted angiogenic factor in laser-induced choroidal neovascularization.
    Ji L; Waduge P; Wan W; Tian H; Li J; Zhang J; Chen R; Li W
    FEBS J; 2022 Jun; 289(12):3521-3534. PubMed ID: 35038348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SGLT2 Inhibitor-Induced Low-Grade Ketonemia Ameliorates Retinal Hypoxia in Diabetic Retinopathy-A Novel Hypothesis.
    Mudaliar S; Hupfeld C; Chao DL
    J Clin Endocrinol Metab; 2021 Apr; 106(5):1235-1244. PubMed ID: 33512450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascular localization of heparan sulfate proteoglycans in retinas of patients with diabetes mellitus and in VEGF-induced retinopathy using domain-specific antibodies.
    Witmer AN; van den Born J; Vrensen GF; Schlingemann RO
    Curr Eye Res; 2001 Mar; 22(3):190-7. PubMed ID: 11462155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attenuation of streptozotocin-induced diabetic retinopathy with low molecular weight fucoidan via inhibition of vascular endothelial growth factor.
    Yang W; Yu X; Zhang Q; Lu Q; Wang J; Cui W; Zheng Y; Wang X; Luo D
    Exp Eye Res; 2013 Oct; 115():96-105. PubMed ID: 23810809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concurrent Physiological and Pathological Angiogenesis in Retinopathy of Prematurity and Emerging Therapies.
    Dai C; Webster KA; Bhatt A; Tian H; Su G; Li W
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34062733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases.
    Le YZ
    Vision Res; 2017 Oct; 139():108-114. PubMed ID: 28601428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thioredoxin-interacting protein deficiency ameliorates diabetic retinal angiogenesis.
    Duan J; Du C; Shi Y; Liu D; Ma J
    Int J Biochem Cell Biol; 2018 Jan; 94():61-70. PubMed ID: 29203232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysregulation of trophic factors contributes to diabetic retinopathy in the Ins2
    Araújo RS; Silva MS; Santos DF; Silva GA
    Exp Eye Res; 2020 May; 194():108027. PubMed ID: 32259534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autophagy in the retinal neurovascular unit: New perspectives into diabetic retinopathy.
    Yang X; Huang Z; Xu M; Chen Y; Cao M; Yi G; Fu M
    J Diabetes; 2023 May; 15(5):382-396. PubMed ID: 36864557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA-15b Targets VEGF and Inhibits Angiogenesis in Proliferative Diabetic Retinopathy.
    Yang Y; Liu Y; Li Y; Chen Z; Xiong Y; Zhou T; Tao W; Xu F; Yang H; Ylä-Herttuala S; Chaurasia SS; Adam WC; Yang K
    J Clin Endocrinol Metab; 2020 Nov; 105(11):3404-15. PubMed ID: 32797181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.