BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 34231239)

  • 1. Fatty Acid Synthase-Suppressor Screening Identifies Sorting Nexin 8 as a Therapeutic Target for NAFLD.
    Hu Y; He W; Huang Y; Xiang H; Guo J; Che Y; Cheng X; Hu F; Hu M; Ma T; Yu J; Tian H; Tian S; Ji YX; Zhang P; She ZG; Zhang XJ; Huang Z; Yang J; Li H
    Hepatology; 2021 Nov; 74(5):2508-2525. PubMed ID: 34231239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The E3 Ubiquitin Ligase Ring Finger Protein 5 Ameliorates NASH Through Ubiquitin-Mediated Degradation of 3-Hydroxy-3-Methylglutaryl CoA Reductase Degradation Protein 1.
    Yang Q; Chen X; Zhang Y; Hu S; Hu F; Huang Y; Ma T; Hu H; Tian H; Tian S; Ji YX; She ZG; Zhang P; Zhang XJ; Hu Y; Yang H; Yuan Y; Li H
    Hepatology; 2021 Dec; 74(6):3018-3036. PubMed ID: 34272738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatic Slug epigenetically promotes liver lipogenesis, fatty liver disease, and type 2 diabetes.
    Liu Y; Lin H; Jiang L; Shang Q; Yin L; Lin JD; Wu WS; Rui L
    J Clin Invest; 2020 Jun; 130(6):2992-3004. PubMed ID: 32365055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Different Mechanisms of Lipid Accumulation in Hepatocytes Induced by Oleic Acid/Palmitic Acid and High-Fat Diet.
    Zhang M; Bai X; Du Q; Xu J; Wang D; Chen L; Dong K; Chen Z; Yang J
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone modifications in FASN modulated by sterol regulatory element-binding protein 1c and carbohydrate responsive-element binding protein under insulin stimulation are related to NAFLD.
    Du X; Cai C; Yao J; Zhou Y; Yu H; Shen W
    Biochem Biophys Res Commun; 2017 Jan; 483(1):409-417. PubMed ID: 28027934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thioredoxin-interacting protein mediates hepatic lipogenesis and inflammation via PRMT1 and PGC-1α regulation in vitro and in vivo.
    Park MJ; Kim DI; Lim SK; Choi JH; Kim JC; Yoon KC; Lee JB; Lee JH; Han HJ; Choi IP; Kim HC; Park SH
    J Hepatol; 2014 Nov; 61(5):1151-7. PubMed ID: 25003952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thrombospondin 1 improves hepatic steatosis in diet-induced insulin-resistant mice and is associated with hepatic fat content in humans.
    Bai J; Xia M; Xue Y; Ma F; Cui A; Sun Y; Han Y; Xu X; Zhang F; Hu Z; Liu Z; Liu Y; Cai G; Su W; Sun X; Wu H; Yan H; Chang X; Hu X; Bian H; Xia P; Gao J; Li Y; Gao X
    EBioMedicine; 2020 Jul; 57():102849. PubMed ID: 32580141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic fatty liver disease.
    Liu J; Tang T; Wang GD; Liu B
    Biosci Rep; 2019 Jul; 39(7):. PubMed ID: 31064820
    [No Abstract]   [Full Text] [Related]  

  • 9. Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6-deficient mice.
    Vida M; Gavito AL; Pavón FJ; Bautista D; Serrano A; Suarez J; Arrabal S; Decara J; Romero-Cuevas M; Rodríguez de Fonseca F; Baixeras E
    Dis Model Mech; 2015 Jul; 8(7):721-31. PubMed ID: 26035386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-103 represses hepatic de novo lipogenesis and alleviates NAFLD via targeting FASN and SCD1.
    Zhang M; Tang Y; Tang E; Lu W
    Biochem Biophys Res Commun; 2020 Apr; 524(3):716-722. PubMed ID: 32035613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin/Snail1 axis ameliorates fatty liver disease by epigenetically suppressing lipogenesis.
    Liu Y; Jiang L; Sun C; Ireland N; Shah YM; Liu Y; Rui L
    Nat Commun; 2018 Jul; 9(1):2751. PubMed ID: 30013137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TRIM56 protects against nonalcoholic fatty liver disease by promoting the degradation of fatty acid synthase.
    Xu S; Wu X; Wang S; Xu M; Fang T; Ma X; Chen M; Fu J; Guo J; Tian S; Tian T; Cheng X; Yang H; Zhou J; Wang Z; Yin Y; Xu W; Xu F; Yan J; Wang Z; Luo S; Zhang XJ; Ji YX; Weng J
    J Clin Invest; 2024 Jan; 134(5):. PubMed ID: 38206764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S100A11 Promotes Liver Steatosis via FOXO1-Mediated Autophagy and Lipogenesis.
    Zhang L; Zhang Z; Li C; Zhu T; Gao J; Zhou H; Zheng Y; Chang Q; Wang M; Wu J; Ran L; Wu Y; Miao H; Zou X; Liang B
    Cell Mol Gastroenterol Hepatol; 2021; 11(3):697-724. PubMed ID: 33075563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR-32-5p induces hepatic steatosis and hyperlipidemia by triggering de novo lipogenesis.
    Wang YD; Wu LL; Mai YN; Wang K; Tang Y; Wang QY; Li JY; Jiang LY; Liao ZZ; Hu C; Wang YY; Liu JJ; Liu JH; Xiao XH
    Metabolism; 2023 Sep; 146():155660. PubMed ID: 37451670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FOXA3 induction under endoplasmic reticulum stress contributes to non-alcoholic fatty liver disease.
    Liu C; Zhou B; Meng M; Zhao W; Wang D; Yuan Y; Zheng Y; Qiu J; Li Y; Li G; Xiong X; Bian H; Zhang H; Wang H; Ma X; Hu C; Xu L; Lu Y
    J Hepatol; 2021 Jul; 75(1):150-162. PubMed ID: 33548387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatic FASN deficiency differentially affects nonalcoholic fatty liver disease and diabetes in mouse obesity models.
    Matsukawa T; Yagi T; Uchida T; Sakai M; Mitsushima M; Naganuma T; Yano H; Inaba Y; Inoue H; Yanagida K; Uematsu M; Nakao K; Nakao H; Aiba A; Nagashima Y; Kubota T; Kubota N; Izumida Y; Yahagi N; Unoki-Kubota H; Kaburagi Y; Asahara SI; Kido Y; Shindou H; Itoh M; Ogawa Y; Minami S; Terauchi Y; Tobe K; Ueki K; Kasuga M; Matsumoto M
    JCI Insight; 2023 Sep; 8(17):. PubMed ID: 37681411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gallic acid impairs fructose-driven de novo lipogenesis and ameliorates hepatic steatosis via AMPK-dependent suppression of SREBP-1/ACC/FASN cascade.
    Lu Y; Zhang C; Song Y; Chen L; Chen X; Zheng G; Yang Y; Cao P; Qiu Z
    Eur J Pharmacol; 2023 Feb; 940():175457. PubMed ID: 36529278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of PHLPP2 by KCTD17, via a Glucagon-Dependent Pathway, Promotes Hepatic Steatosis.
    Kim K; Ryu D; Dongiovanni P; Ozcan L; Nayak S; Ueberheide B; Valenti L; Auwerx J; Pajvani UB
    Gastroenterology; 2017 Dec; 153(6):1568-1580.e10. PubMed ID: 28859855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of hepassocin in the development of non-alcoholic fatty liver disease.
    Wu HT; Lu FH; Ou HY; Su YC; Hung HC; Wu JS; Yang YC; Wu CL; Chang CJ
    J Hepatol; 2013 Nov; 59(5):1065-72. PubMed ID: 23792031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ellagic acid ameliorates AKT-driven hepatic steatosis in mice by suppressing de novo lipogenesis via the AKT/SREBP-1/FASN pathway.
    Zhang C; Hu J; Sheng L; Yuan M; Wu Y; Chen L; Wang G; Qiu Z
    Food Funct; 2019 Jun; 10(6):3410-3420. PubMed ID: 31123744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.