These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 34231641)
1. Surface chemistry in calcium capped carbon quantum dots. Ren S; Liu B; Han G; Zhao H; Zhang Y Nanoscale; 2021 Jul; 13(28):12149-12156. PubMed ID: 34231641 [TBL] [Abstract][Full Text] [Related]
2. Self-Precipitation of Highly Purified Red Emitting Carbon Dots as Red Phosphors. Meng X; Song Y; Jing Q; Zhao H J Phys Chem Lett; 2023 Oct; 14(41):9176-9182. PubMed ID: 37797292 [TBL] [Abstract][Full Text] [Related]
3. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Mintz KJ; Zhou Y; Leblanc RM Nanoscale; 2019 Mar; 11(11):4634-4652. PubMed ID: 30834912 [TBL] [Abstract][Full Text] [Related]
4. Presence of photoluminescent carbon dots in Nescafe® original instant coffee: applications to bioimaging. Jiang C; Wu H; Song X; Ma X; Wang J; Tan M Talanta; 2014 Sep; 127():68-74. PubMed ID: 24913858 [TBL] [Abstract][Full Text] [Related]
5. Surface Sensitive Photoluminescence of Carbon Nanodots: Coupling between the Carbonyl Group and π-Electron System. Liu C; Bao L; Yang M; Zhang S; Zhou M; Tang B; Wang B; Liu Y; Zhang ZL; Zhang B; Pang DW J Phys Chem Lett; 2019 Jul; 10(13):3621-3629. PubMed ID: 31199162 [TBL] [Abstract][Full Text] [Related]
6. Excitation-Dependent Photoluminescence from Single-Carbon Dots. van Dam B; Nie H; Ju B; Marino E; Paulusse JMJ; Schall P; Li M; Dohnalová K Small; 2017 Dec; 13(48):. PubMed ID: 29120084 [TBL] [Abstract][Full Text] [Related]
7. Quantum yield regeneration: influence of neutral ligand binding on photophysical properties in colloidal core/shell quantum dots. Shen Y; Tan R; Gee MY; Greytak AB ACS Nano; 2015 Mar; 9(3):3345-59. PubMed ID: 25753127 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic studies on the reversible photophysical properties of carbon nanodots at different pH. Xu ZQ; Lan JY; Jin JC; Gao T; Pan LL; Jiang FL; Liu Y Colloids Surf B Biointerfaces; 2015 Jun; 130():207-14. PubMed ID: 25910636 [TBL] [Abstract][Full Text] [Related]
9. One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. Yang X; Wang Y; Shen X; Su C; Yang J; Piao M; Jia F; Gao G; Zhang L; Lin Q J Colloid Interface Sci; 2017 Apr; 492():1-7. PubMed ID: 28068539 [TBL] [Abstract][Full Text] [Related]
10. Solvatochromism in highly luminescent environmental friendly carbon quantum dots for sensing applications: Conversion of bio-waste into bio-asset. Pramanik A; Biswas S; Kumbhakar P Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():498-512. PubMed ID: 29091909 [TBL] [Abstract][Full Text] [Related]
11. Purification and In Situ Ligand Exchange of Metal-Carboxylate-Treated Fluorescent InP Quantum Dots via Gel Permeation Chromatography. Roberge A; Stein JL; Shen Y; Cossairt BM; Greytak AB J Phys Chem Lett; 2017 Sep; 8(17):4055-4060. PubMed ID: 28799766 [TBL] [Abstract][Full Text] [Related]
12. Size-dependent penetration of carbon dots inside the ferritin nanocages: evidence for the quantum confinement effect in carbon dots. Bhattacharya A; Chatterjee S; Prajapati R; Mukherjee TK Phys Chem Chem Phys; 2015 May; 17(19):12833-40. PubMed ID: 25906758 [TBL] [Abstract][Full Text] [Related]
13. Tuning optical properties of Si quantum dots by π-conjugated capping molecules. Dung MX; Tung DD; Jeong S; Jeong HD Chem Asian J; 2013 Mar; 8(3):653-64. PubMed ID: 23307703 [TBL] [Abstract][Full Text] [Related]
14. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots. Weiss EA Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589 [TBL] [Abstract][Full Text] [Related]
15. Luminescent properties of water-soluble denatured bovine serum albumin-coated CdTe quantum dots. Wang Q; Kuo Y; Wang Y; Shin G; Ruengruglikit C; Huang Q J Phys Chem B; 2006 Aug; 110(34):16860-6. PubMed ID: 16927973 [TBL] [Abstract][Full Text] [Related]
16. Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. Swarnkar A; Chulliyil R; Ravi VK; Irfanullah M; Chowdhury A; Nag A Angew Chem Int Ed Engl; 2015 Dec; 54(51):15424-8. PubMed ID: 26546495 [TBL] [Abstract][Full Text] [Related]
17. Transition Metal Ion (Mn Rub Pakkath SA; Chetty SS; Selvarasu P; Vadivel Murugan A; Kumar Y; Periyasamy L; Santhakumar M; Sadras SR; Santhakumar K ACS Biomater Sci Eng; 2018 Jul; 4(7):2582-2596. PubMed ID: 33435121 [TBL] [Abstract][Full Text] [Related]
18. Quantitatively Switchable pH-Sensitive Photoluminescence of Carbon Nanodots. Liu C; Yang M; Hu J; Bao L; Tang B; Wei X; Zhao JL; Jin Z; Luo QY; Pang DW J Phys Chem Lett; 2021 Mar; 12(11):2727-2735. PubMed ID: 33705142 [TBL] [Abstract][Full Text] [Related]
19. Highly bright solid-state carbon dots for efficient anticounterfeiting. Li W; Han Y; Wang L; Selopal GS; Wang X; Zhao H RSC Adv; 2024 Jan; 14(1):83-89. PubMed ID: 38173574 [TBL] [Abstract][Full Text] [Related]
20. The environmental influence on the photoluminescence behavior of thiol-capped CdTe quantum dots in living cells. Zhang Y; Mi L; Chen JY; Wang PN Biomed Mater; 2009 Feb; 4(1):012001. PubMed ID: 18981545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]