These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 34231854)

  • 1. Executive Function Assigns Value to Novel Goal-Congruent Outcomes.
    McDougle SD; Ballard IC; Baribault B; Bishop SJ; Collins AGE
    Cereb Cortex; 2021 Nov; 32(1):231-247. PubMed ID: 34231854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Where Does Value Come From?
    Juechems K; Summerfield C
    Trends Cogn Sci; 2019 Oct; 23(10):836-850. PubMed ID: 31494042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Flexibility in Striatal-Cortical Circuits Supports Reinforcement Learning.
    Gerraty RT; Davidow JY; Foerde K; Galvan A; Bassett DS; Shohamy D
    J Neurosci; 2018 Mar; 38(10):2442-2453. PubMed ID: 29431652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tonic or Phasic Stimulation of Dopaminergic Projections to Prefrontal Cortex Causes Mice to Maintain or Deviate from Previously Learned Behavioral Strategies.
    Ellwood IT; Patel T; Wadia V; Lee AT; Liptak AT; Bender KJ; Sohal VS
    J Neurosci; 2017 Aug; 37(35):8315-8329. PubMed ID: 28739583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological responses of medial prefrontal cortex to feedback at different levels of hierarchy.
    Shahnazian D; Shulver K; Holroyd CB
    Neuroimage; 2018 Dec; 183():121-131. PubMed ID: 30081194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methamphetamine-induced disruption of frontostriatal reward learning signals: relation to psychotic symptoms.
    Bernacer J; Corlett PR; Ramachandra P; McFarlane B; Turner DC; Clark L; Robbins TW; Fletcher PC; Murray GK
    Am J Psychiatry; 2013 Nov; 170(11):1326-34. PubMed ID: 23732871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticostriatothalamic reward prediction error signals and executive control in late-life depression.
    Dombrovski AY; Szanto K; Clark L; Aizenstein HJ; Chase HW; Reynolds CF; Siegle GJ
    Psychol Med; 2015 May; 45(7):1413-24. PubMed ID: 25319564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neurocomputational bases of explore-exploit decision-making.
    Hogeveen J; Mullins TS; Romero JD; Eversole E; Rogge-Obando K; Mayer AR; Costa VD
    Neuron; 2022 Jun; 110(11):1869-1879.e5. PubMed ID: 35390278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta Oscillations in Monkey Striatum Encode Reward Prediction Error Signals.
    Basanisi R; Marche K; Combrisson E; Apicella P; Brovelli A
    J Neurosci; 2023 May; 43(18):3339-3352. PubMed ID: 37015808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices.
    Jocham G; Klein TA; Ullsperger M
    J Neurosci; 2011 Feb; 31(5):1606-13. PubMed ID: 21289169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ventral striatum and orbitofrontal cortex are both required for model-based, but not model-free, reinforcement learning.
    McDannald MA; Lucantonio F; Burke KA; Niv Y; Schoenbaum G
    J Neurosci; 2011 Feb; 31(7):2700-5. PubMed ID: 21325538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: computational analysis.
    Frank MJ; Badre D
    Cereb Cortex; 2012 Mar; 22(3):509-26. PubMed ID: 21693490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identity-Specific Reward Representations in Orbitofrontal Cortex Are Modulated by Selective Devaluation.
    Howard JD; Kahnt T
    J Neurosci; 2017 Mar; 37(10):2627-2638. PubMed ID: 28159906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Reinforcement Meta-Learning framework of executive function and information demand.
    Silvetti M; Lasaponara S; Daddaoua N; Horan M; Gottlieb J
    Neural Netw; 2023 Jan; 157():103-113. PubMed ID: 36334532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The prefrontal cortex and hybrid learning during iterative competitive games.
    Abe H; Seo H; Lee D
    Ann N Y Acad Sci; 2011 Dec; 1239():100-8. PubMed ID: 22145879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversing the Atypical Valuation of Drug and Nondrug Rewards in Smokers Using Multimodal Neuroimaging.
    Baker TE; Lesperance P; Tucholka A; Potvin S; Larcher K; Zhang Y; Jutras-Aswad D; Conrod P
    Biol Psychiatry; 2017 Dec; 82(11):819-827. PubMed ID: 28314439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Value signals guide abstraction during learning.
    Cortese A; Yamamoto A; Hashemzadeh M; Sepulveda P; Kawato M; De Martino B
    Elife; 2021 Jul; 10():. PubMed ID: 34254586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Neurocomputational Model for Intrinsic Reward.
    Chew B; Blain B; Dolan RJ; Rutledge RB
    J Neurosci; 2021 Oct; 41(43):8963-8971. PubMed ID: 34544831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.