BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 34232061)

  • 1. RecT Recombinase Expression Enables Efficient Gene Editing in
    Chen V; Griffin ME; Maguin P; Varble A; Hang HC
    Appl Environ Microbiol; 2021 Aug; 87(18):e0084421. PubMed ID: 34232061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and Scalable Precision Genome Editing in
    Penewit K; Holmes EA; McLean K; Ren M; Waalkes A; Salipante SJ
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463653
    [No Abstract]   [Full Text] [Related]  

  • 3. Rapid, Efficient, and Cost-Effective Gene Editing of Enterococcus faecium with CRISPR-Cas12a.
    Chua MJ; Collins J
    Microbiol Spectr; 2022 Feb; 10(1):e0242721. PubMed ID: 35107356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9-mediated genome editing in vancomycin-resistant Enterococcus faecium.
    de Maat V; Stege PB; Dedden M; Hamer M; van Pijkeren JP; Willems RJL; van Schaik W
    FEMS Microbiol Lett; 2019 Nov; 366(22):. PubMed ID: 31905238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient and Precise Genome Editing in
    Corts AD; Thomason LC; Gill RT; Gralnick JA
    ACS Synth Biol; 2019 Aug; 8(8):1877-1889. PubMed ID: 31277550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid and versatile tool for genomic engineering in Lactococcus lactis.
    Guo T; Xin Y; Zhang Y; Gu X; Kong J
    Microb Cell Fact; 2019 Jan; 18(1):22. PubMed ID: 30704485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ccrABEnt serine recombinase genes are widely distributed in the Enterococcus faecium and Enterococcus casseliflavus species groups and are expressed in E. faecium.
    Bjørkeng EK; Tessema GT; Lundblad EW; Butaye P; Willems R; Sollid JE; Sundsfjord A; Hegstad K
    Microbiology (Reading); 2010 Dec; 156(Pt 12):3624-3634. PubMed ID: 20817645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.
    Wu Z; Chen Z; Gao X; Li J; Shang G
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis.
    Mikalsen T; Pedersen T; Willems R; Coque TM; Werner G; Sadowy E; van Schaik W; Jensen LB; Sundsfjord A; Hegstad K
    BMC Genomics; 2015 Apr; 16():282. PubMed ID: 25885771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Editing with CRISPR-Cas9 in Lactobacillus plantarum Revealed That Editing Outcomes Can Vary Across Strains and Between Methods.
    Leenay RT; Vento JM; Shah M; Martino ME; Leulier F; Beisel CL
    Biotechnol J; 2019 Mar; 14(3):e1700583. PubMed ID: 30156038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli.
    Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2015 Aug; 81(15):5103-14. PubMed ID: 26002895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 14. An Attenuated CRISPR-Cas System in Enterococcus faecalis Permits DNA Acquisition.
    Hullahalli K; Rodrigues M; Nguyen UT; Palmer K
    mBio; 2018 May; 9(3):. PubMed ID: 29717009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas12a-Assisted Recombineering in Bacteria.
    Yan MY; Yan HQ; Ren GX; Zhao JP; Guo XP; Sun YC
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28646112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomics of Enterococcus spp. isolated from bovine feces.
    Beukers AG; Zaheer R; Goji N; Amoako KK; Chaves AV; Ward MP; McAllister TA
    BMC Microbiol; 2017 Mar; 17(1):52. PubMed ID: 28270110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmids Shaped the Recent Emergence of the Major Nosocomial Pathogen Enterococcus faecium.
    Arredondo-Alonso S; Top J; McNally A; Puranen S; Pesonen M; Pensar J; Marttinen P; Braat JC; Rogers MRC; van Schaik W; Kaski S; Willems RJL; Corander J; Schürch AC
    mBio; 2020 Feb; 11(1):. PubMed ID: 32047136
    [No Abstract]   [Full Text] [Related]  

  • 19. A Simplified Method for CRISPR-Cas9 Engineering of Bacillus subtilis.
    Sachla AJ; Alfonso AJ; Helmann JD
    Microbiol Spectr; 2021 Oct; 9(2):e0075421. PubMed ID: 34523974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in
    Zhou D; Jiang Z; Pang Q; Zhu Y; Wang Q; Qi Q
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444197
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.