These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 34232078)

  • 1. Imaging and Quantification of mRNA Molecules at Single-Cell Resolution in the Human Fungal Pathogen Candida albicans.
    Moreno-Velásquez SD; Pérez JC
    mSphere; 2021 Aug; 6(4):e0041121. PubMed ID: 34232078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach to analyze spatiotemporal patterns of gene expression at single-cell resolution in
    Lindemann-Perez E; Rodríguez DL; Pérez JC
    mSphere; 2024 Sep; 9(9):e0028224. PubMed ID: 39171917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Molecule Fluorescent In Situ Hybridization (smFISH) for RNA Detection in the Fungal Pathogen Candida albicans.
    van Otterdijk S; Motealleh M; Wang Z; Visser TD; Savakis P; Tutucci E
    Methods Mol Biol; 2024; 2784():25-44. PubMed ID: 38502476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fungal Transcription Regulator of Vacuolar Function Modulates Candida albicans Interactions with Host Epithelial Cells.
    Reuter-Weissenberger P; Meir J; Pérez JC
    mBio; 2021 Dec; 12(6):e0302021. PubMed ID: 34781731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of Candida albicans and Candida dubliniensis by fluorescent in situ hybridization with peptide nucleic acid probes.
    Oliveira K; Haase G; Kurtzman C; Hyldig-Nielsen JJ; Stender H
    J Clin Microbiol; 2001 Nov; 39(11):4138-41. PubMed ID: 11682542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific detection of Candida albicans and Candida tropicalis by fluorescent in situ hybridization with an 18S rRNA-targeted oligonucleotide probe.
    Lischewski A; Amann RI; Harmsen D; Merkert H; Hacker J; Morschhäuser J
    Microbiology (Reading); 1996 Oct; 142 ( Pt 10)():2731-40. PubMed ID: 8885388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release of transcriptional repression through the HCR promoter region confers uniform expression of HWP1 on surfaces of Candida albicans germ tubes.
    Kim S; Nguyen QB; Wolyniak MJ; Frechette G; Lehman CR; Fox BK; Sundstrom P
    PLoS One; 2018; 13(2):e0192260. PubMed ID: 29438403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of fluorescence in situ hybridisation (FISH) for the identification of Candida albicans in comparison with three phenotypic methods.
    Lakner A; Essig A; Frickmann H; Poppert S
    Mycoses; 2012 May; 55(3):e114-23. PubMed ID: 22126597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA Enrichment Method for Quantitative Transcriptional Analysis of Pathogens In Vivo Applied to the Fungus Candida albicans.
    Amorim-Vaz S; Tran Vdu T; Pradervand S; Pagni M; Coste AT; Sanglard D
    mBio; 2015 Sep; 6(5):e00942-15. PubMed ID: 26396240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput RNA-HCR-FISH Detection of Endogenous Pre-mRNA Splice Variants.
    Shilo A; Pegoraro G; Misteli T
    Methods Mol Biol; 2024; 2784():133-146. PubMed ID: 38502483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and accurate identification of Candida albicans isolates by use of PNA FISHFlow.
    Trnovsky J; Merz W; Della-Latta P; Wu F; Arendrup MC; Stender H
    J Clin Microbiol; 2008 Apr; 46(4):1537-40. PubMed ID: 18287325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybridization Chain Reaction Fluorescence In Situ Hybridization (HCR-FISH) in Ambystoma mexicanum Tissue.
    Lovely AM; Duerr TJ; Stein DF; Mun ET; Monaghan JR
    Methods Mol Biol; 2023; 2562():109-122. PubMed ID: 36272070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid quantification of drug resistance gene expression in Candida albicans by reverse transcriptase LightCycler PCR and fluorescent probe hybridization.
    Frade JP; Warnock DW; Arthington-Skaggs BA
    J Clin Microbiol; 2004 May; 42(5):2085-93. PubMed ID: 15131174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Molecule Fluorescence In Situ Hybridization (FISH) of Circular RNA CDR1as.
    Kocks C; Boltengagen A; Piwecka M; Rybak-Wolf A; Rajewsky N
    Methods Mol Biol; 2018; 1724():77-96. PubMed ID: 29322442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validating transcripts with probes and imaging technology.
    Itzkovitz S; van Oudenaarden A
    Nat Methods; 2011 Apr; 8(4 Suppl):S12-9. PubMed ID: 21451512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and identification of Candida species in experimentally infected tissue and human blood by rRNA-specific fluorescent in situ hybridization.
    Lischewski A; Kretschmar M; Hof H; Amann R; Hacker J; Morschhäuser J
    J Clin Microbiol; 1997 Nov; 35(11):2943-8. PubMed ID: 9350764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intravital Imaging Reveals Divergent Cytokine and Cellular Immune Responses to Candida albicans and Candida parapsilosis.
    Archambault LS; Trzilova D; Gonia S; Gale C; Wheeler RT
    mBio; 2019 May; 10(3):. PubMed ID: 31088918
    [No Abstract]   [Full Text] [Related]  

  • 18. Messenger RNA transport in the opportunistic fungal pathogen Candida albicans.
    McBride AE
    Curr Genet; 2017 Dec; 63(6):989-995. PubMed ID: 28512683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Single Molecule mRNA Fluorescent in Situ Hybridization (RNA-FISH) to Quantify mRNAs in Individual Murine Oocytes and Embryos.
    Xie F; Timme KA; Wood JR
    Sci Rep; 2018 May; 8(1):7930. PubMed ID: 29785002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed Quantitative In Situ Hybridization for Mammalian Cells on a Slide: qHCR and dHCR Imaging (v3.0).
    Schwarzkopf M; Choi HMT; Pierce NA
    Methods Mol Biol; 2020; 2148():143-156. PubMed ID: 32394380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.