BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34232078)

  • 21. Branched Hybridization Chain Reaction Circuit for Ultrasensitive Localizable Imaging of mRNA in Living Cells.
    Liu L; Liu JW; Wu H; Wang XN; Yu RQ; Jiang JH
    Anal Chem; 2018 Feb; 90(3):1502-1505. PubMed ID: 29300081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visualization of Candida albicans in the Murine Gastrointestinal Tract Using Fluorescent In Situ Hybridization.
    Witchley JN; Penumetcha PM; Noble SM
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31762460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression.
    Xia C; Fan J; Emanuel G; Hao J; Zhuang X
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19490-19499. PubMed ID: 31501331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved DNA-FISH for cytometric detection of Candida spp.
    Bisha B; Kim HJ; Brehm-Stecher BF
    J Appl Microbiol; 2011 Apr; 110(4):881-92. PubMed ID: 21205104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-molecule resolution fluorescent in situ hybridization (smFISH) in the yeast S. cerevisiae.
    Rahman S; Zenklusen D
    Methods Mol Biol; 2013; 1042():33-46. PubMed ID: 23979998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid identification of Candida albicans in blood by combined capillary electrophoresis and fluorescence in situ hybridization.
    Lantz AW; Bisha B; Tong MY; Nelson RE; Brehm-Stecher BF; Armstrong DW
    Electrophoresis; 2010 Aug; 31(16):2849-53. PubMed ID: 20665522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multicenter evaluation of a Candida albicans peptide nucleic acid fluorescent in situ hybridization probe for characterization of yeast isolates from blood cultures.
    Wilson DA; Joyce MJ; Hall LS; Reller LB; Roberts GD; Hall GS; Alexander BD; Procop GW
    J Clin Microbiol; 2005 Jun; 43(6):2909-12. PubMed ID: 15956416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D exploration of gene expression in chicken embryos through combined RNA fluorescence in situ hybridization, immunofluorescence, and clearing.
    André M; Dinvaut S; Castellani V; Falk J
    BMC Biol; 2024 Jun; 22(1):131. PubMed ID: 38831263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Click chemistry-based amplification and detection of endogenous RNA and DNA molecules in situ using clampFISH probes.
    Tavakoli S; Liu Y; Potts JL; Rouhanifard SH
    Methods Enzymol; 2020; 641():459-476. PubMed ID: 32713535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential expression of Candida albicans secreted aspartyl proteinase in human vulvovaginal candidiasis.
    Lian CH; Liu WD
    Mycoses; 2007 Sep; 50(5):383-90. PubMed ID: 17714358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulators of commensal and pathogenic life-styles of an opportunistic fungus-Candida albicans.
    Rai LS; Wijlick LV; Bougnoux ME; Bachellier-Bassi S; d'Enfert C
    Yeast; 2021 Apr; 38(4):243-250. PubMed ID: 33533498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multicenter evaluation of the Candida albicans/Candida glabrata peptide nucleic acid fluorescent in situ hybridization method for simultaneous dual-color identification of C. albicans and C. glabrata directly from blood culture bottles.
    Shepard JR; Addison RM; Alexander BD; Della-Latta P; Gherna M; Haase G; Hall G; Johnson JK; Merz WG; Peltroche-Llacsahuanga H; Stender H; Venezia RA; Wilson D; Procop GW; Wu F; Fiandaca MJ
    J Clin Microbiol; 2008 Jan; 46(1):50-5. PubMed ID: 17977998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell-to-Cell Transcription Variability as Measured by Single-Molecule RNA FISH to Detect Epigenetic State Switching.
    Beckman W; Vuist IM; Kempe H; Verschure PJ
    Methods Mol Biol; 2018; 1767():385-393. PubMed ID: 29524147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH.
    Eng CL; Lawson M; Zhu Q; Dries R; Koulena N; Takei Y; Yun J; Cronin C; Karp C; Yuan GC; Cai L
    Nature; 2019 Apr; 568(7751):235-239. PubMed ID: 30911168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and evaluation of peptide nucleic acid probes for specific identification of Candida albicans.
    Kim HJ; Brehm-Stecher BF
    J Clin Microbiol; 2015 Feb; 53(2):511-21. PubMed ID: 25428160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced mRNA FISH with compact quantum dots.
    Liu Y; Le P; Lim SJ; Ma L; Sarkar S; Han Z; Murphy SJ; Kosari F; Vasmatzis G; Cheville JC; Smith AM
    Nat Commun; 2018 Oct; 9(1):4461. PubMed ID: 30367061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Candida albicans promotes invasion and colonisation of Candida glabrata in a reconstituted human vaginal epithelium.
    Alves CT; Wei XQ; Silva S; Azeredo J; Henriques M; Williams DW
    J Infect; 2014 Oct; 69(4):396-407. PubMed ID: 24924556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid differentiation of Candida albicans from non-C. albicans directly in a variety of clinical specimens using fluorescent in situ hybridisation.
    Wang P
    Mycoses; 2011 Jul; 54(4):331-6. PubMed ID: 20070532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection and signal amplification in zebrafish RNA FISH.
    Hauptmann G; Lauter G; Söll I
    Methods; 2016 Apr; 98():50-59. PubMed ID: 26821229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative Evaluations of the Pathogenesis of Candida auris Phenotypes and Candida albicans Using Clinically Relevant Murine Models of Infections.
    Vila T; Montelongo-Jauregui D; Ahmed H; Puthran T; Sultan AS; Jabra-Rizk MA
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32759340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.