These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34232672)

  • 1. Nonequilibrium Thermodynamics of Charge Separation in Organic Solar Cells.
    Kaiser W; Janković V; Vukmirović N; Gagliardi A
    J Phys Chem Lett; 2021 Jul; 12(27):6389-6397. PubMed ID: 34232672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Entropy Gains in the Exciton Separation in Organic Solar Cells.
    Yan Y; Zhang Y; Memon WA; Wang M; Zhang X; Wei Z
    Macromol Rapid Commun; 2022 Aug; 43(16):e2100903. PubMed ID: 35338684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increases in the Charge Separation Barrier in Organic Solar Cells Due to Delocalization.
    Gluchowski A; Gray KLG; Hood SN; Kassal I
    J Phys Chem Lett; 2018 Mar; 9(6):1359-1364. PubMed ID: 29494769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Charge Separation of Cold Charge-Transfer States in Organic Solar Cells Through Incoherent Hopping.
    Athanasopoulos S; Tscheuschner S; Bässler H; Köhler A
    J Phys Chem Lett; 2017 May; 8(9):2093-2098. PubMed ID: 28436660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells.
    Yan Y; Song L; Shi Q
    J Chem Phys; 2018 Feb; 148(8):084109. PubMed ID: 29495761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-Domain Ab Initio Analysis of Excitation Dynamics in a Quantum Dot/Polymer Hybrid: Atomistic Description Rationalizes Experiment.
    Long R; Prezhdo OV
    Nano Lett; 2015 Jul; 15(7):4274-81. PubMed ID: 26061416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of driving energy and delocalized States for charge separation in organic semiconductors.
    Bakulin AA; Rao A; Pavelyev VG; van Loosdrecht PH; Pshenichnikov MS; Niedzialek D; Cornil J; Beljonne D; Friend RH
    Science; 2012 Mar; 335(6074):1340-4. PubMed ID: 22362882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracting Electrons from Delocalized Excitons by Flattening the Energetic Pathway for Charge Separation.
    Wanigasekara S; Kattel B; Rudayni F; Chan WL
    J Phys Chem Lett; 2021 Sep; 12(37):9047-9054. PubMed ID: 34516118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Coherent Electron-Hole Separation Dynamics in a Fullerene Derivative.
    Chapman CT; Liang W; Li X
    J Phys Chem Lett; 2011 May; 2(10):1189-92. PubMed ID: 26295324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-induced charge separation across the graphene-TiO2 interface is faster than energy losses: a time-domain ab initio analysis.
    Long R; English NJ; Prezhdo OV
    J Am Chem Soc; 2012 Aug; 134(34):14238-48. PubMed ID: 22880690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entropy and Disorder Enable Charge Separation in Organic Solar Cells.
    Hood SN; Kassal I
    J Phys Chem Lett; 2016 Nov; 7(22):4495-4500. PubMed ID: 27783509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concurrent Effects of Delocalization and Internal Conversion Tune Charge Separation at Regioregular Polythiophene-Fullerene Heterojunctions.
    Huix-Rotllant M; Tamura H; Burghardt I
    J Phys Chem Lett; 2015 May; 6(9):1702-8. PubMed ID: 26263337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption.
    Novoderezhkin VI; Andrizhiyevskaya EG; Dekker JP; van Grondelle R
    Biophys J; 2005 Sep; 89(3):1464-81. PubMed ID: 15980183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonequilibrium thermodynamics. II. Application to inhomogeneous systems.
    Gujrati PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041128. PubMed ID: 22680440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Even a little delocalization produces large kinetic enhancements of charge-separation efficiency in organic photovoltaics.
    Balzer D; Kassal I
    Sci Adv; 2022 Aug; 8(32):eabl9692. PubMed ID: 35960797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disorder vs Delocalization: Which Is More Advantageous for High-Efficiency Organic Solar Cells?
    Athanasopoulos S; Bässler H; Köhler A
    J Phys Chem Lett; 2019 Nov; 10(22):7107-7112. PubMed ID: 31661274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking Photoinduced Charge Separation in DNA: from Start to Finish.
    Lewis FD; Young RM; Wasielewski MR
    Acc Chem Res; 2018 Aug; 51(8):1746-1754. PubMed ID: 30070820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Long-Range Charge Separation in Nonfullerene Organic Solar Cells.
    Tamai Y; Fan Y; Kim VO; Ziabrev K; Rao A; Barlow S; Marder SR; Friend RH; Menke SM
    ACS Nano; 2017 Dec; 11(12):12473-12481. PubMed ID: 29148715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-lived and disorder-free charge transfer states enable endothermic charge separation in efficient non-fullerene organic solar cells.
    Hinrichsen TF; Chan CCS; Ma C; Paleček D; Gillett A; Chen S; Zou X; Zhang G; Yip HL; Wong KS; Friend RH; Yan H; Rao A; Chow PCY
    Nat Commun; 2020 Nov; 11(1):5617. PubMed ID: 33154367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.