These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34232672)

  • 21. Hot kinetic model as a guide to improve organic photovoltaic materials.
    Sosorev AY; Godovsky DY; Paraschuk DY
    Phys Chem Chem Phys; 2018 Jan; 20(5):3658-3671. PubMed ID: 29344598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells.
    Naveed HB; Zhou K; Ma W
    Acc Chem Res; 2019 Oct; 52(10):2904-2915. PubMed ID: 31577121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems.
    Ge H; Qian H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062125. PubMed ID: 23848645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visualizing charge separation in bulk heterojunction organic solar cells.
    Amarasinghe Vithanage D; Devižis A; Abramavičius V; Infahsaeng Y; Abramavičius D; MacKenzie RC; Keivanidis PE; Yartsev A; Hertel D; Nelson J; Sundström V; Gulbinas V
    Nat Commun; 2013; 4():2334. PubMed ID: 23945881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient charge generation at low energy losses in organic solar cells: a key issues review.
    Xu Y; Yao H; Ma L; Wang J; Hou J
    Rep Prog Phys; 2020 Aug; 83(8):082601. PubMed ID: 32375132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Charge-Transfer State Dynamics Following Hole and Electron Transfer in Organic Photovoltaic Devices.
    Bakulin AA; Dimitrov SD; Rao A; Chow PC; Nielsen CB; Schroeder BC; McCulloch I; Bakker HJ; Durrant JR; Friend RH
    J Phys Chem Lett; 2013 Jan; 4(1):209-15. PubMed ID: 26291233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Weak Donor-Acceptor Interaction and Interface Polarization Define Photoexcitation Dynamics in the MoS
    Wei Y; Li L; Fang W; Long R; Prezhdo OV
    Nano Lett; 2017 Jul; 17(7):4038-4046. PubMed ID: 28586230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
    Bazant MZ
    Acc Chem Res; 2013 May; 46(5):1144-60. PubMed ID: 23520980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Equilibrated Charge Carrier Populations Govern Steady-State Nongeminate Recombination in Disordered Organic Solar Cells.
    Roland S; Kniepert J; Love JA; Negi V; Liu F; Bobbert P; Melianas A; Kemerink M; Hofacker A; Neher D
    J Phys Chem Lett; 2019 Mar; 10(6):1374-1381. PubMed ID: 30829040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polarization Energies at Organic-Organic Interfaces: Impact on the Charge Separation Barrier at Donor-Acceptor Interfaces in Organic Solar Cells.
    Ryno SM; Fu YT; Risko C; Brédas JL
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15524-34. PubMed ID: 27244215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Order enables efficient electron-hole separation at an organic heterojunction with a small energy loss.
    Menke SM; Cheminal A; Conaghan P; Ran NA; Greehnam NC; Bazan GC; Nguyen TQ; Rao A; Friend RH
    Nat Commun; 2018 Jan; 9(1):277. PubMed ID: 29348491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Combined Theoretical and Experimental Study of Dissociation of Charge Transfer States at the Donor-Acceptor Interface of Organic Solar Cells.
    Tscheuschner S; Bässler H; Huber K; Köhler A
    J Phys Chem B; 2015 Aug; 119(32):10359-71. PubMed ID: 26176273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Charge-transfer electronic states in organic solar cells: a TDDFT study.
    Marmolejo-Valencia AF; Mata-Pinzón Z; Amador-Bedolla C
    Phys Chem Chem Phys; 2021 Aug; 23(31):16806-16815. PubMed ID: 34323261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Asymmetry in the electron and hole transfer at a polymer-carbon nanotube heterojunction.
    Long R; Prezhdo OV
    Nano Lett; 2014 Jun; 14(6):3335-41. PubMed ID: 24841921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Separating Charges at Organic Interfaces: Effects of Disorder, Hot States, and Electric Field.
    Nayak PK; Narasimhan KL; Cahen D
    J Phys Chem Lett; 2013 May; 4(10):1707-17. PubMed ID: 26282982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells.
    Zhan L; Li S; Zhang S; Chen X; Lau TK; Lu X; Shi M; Li CZ; Chen H
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42444-42452. PubMed ID: 30444596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Charge separation pathways in a highly efficient polymer: fullerene solar cell material.
    Paraecattil AA; Banerji N
    J Am Chem Soc; 2014 Jan; 136(4):1472-82. PubMed ID: 24437495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Role of Delocalization and Excess Energy in the Quantum Efficiency of Organic Solar Cells and the Validity of Optical Reciprocity Relations.
    Felekidis N; Melianas A; Kemerink M
    J Phys Chem Lett; 2020 May; 11(9):3563-3570. PubMed ID: 32301322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distance distributions of photogenerated charge pairs in organic photovoltaic cells.
    Barker AJ; Chen K; Hodgkiss JM
    J Am Chem Soc; 2014 Aug; 136(34):12018-26. PubMed ID: 25102389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.