These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 3423269)

  • 1. Effects of chronic manipulations of dietary choline on dynamic behavioural situations.
    Fundarò A; Garassino G; Molinengo L
    Prog Neuropsychopharmacol Biol Psychiatry; 1987; 11(5):601-11. PubMed ID: 3423269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioural effects of chronic manipulations of dietary choline in senescent rats.
    Fundaro A; Paschero A
    Prog Neuropsychopharmacol Biol Psychiatry; 1990; 14(6):949-60. PubMed ID: 2277854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action of a chronic administration of mescaline in dynamic behavioural situations.
    Fundaro' A; Molinengo L; Cassone MC; Orsetti M
    Prog Neuropsychopharmacol Biol Psychiatry; 1986; 10(1):41-8. PubMed ID: 3704173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action of caffeine, d-amphetamine, diazepam and imipramine in a dynamic behavioural situation.
    Fundarò A; Ricci Gamalero S; Molinengo L
    Pharmacol Res Commun; 1983 Jan; 15(1):71-84. PubMed ID: 6828545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary choline manipulations and behavioural modifications in rats in the early stages of aging.
    Fundarò A; Paschero A
    Prog Neuropsychopharmacol Biol Psychiatry; 1991; 15(5):677-88. PubMed ID: 1956994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of chronic manipulations of dietary choline on locomotor activity, discrimination learning and cortical acetylcholine release in aging adult Fisher 344 rats.
    Beninger RJ; Tighe SA; Jhamandas K
    Neurobiol Aging; 1984; 5(1):29-34. PubMed ID: 6738783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrastriatal injection of choline accelerates the acquisition of positively rewarded behaviors.
    Diaz del Guante MA; Carbonell-Hernandez C; Quirarte G; Cruz-Morales SE; Rivas-Arancibia S; Prado-Alcalá RA
    Brain Res Bull; 1993; 30(5-6):671-5. PubMed ID: 8457914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of phenytoin on schedule-controlled performance of rats.
    Krafft K; Lyon DO; Poling A
    Psychopharmacology (Berl); 1982; 78(1):93-5. PubMed ID: 6815703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Value transmission in discrimination learning involving stimulus chains.
    Williams BA
    J Exp Anal Behav; 1999 Sep; 72(2):177-85. PubMed ID: 10503297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The psychopharmacology of impulsive behaviour in rats VIII: effects of amphetamine, methylphenidate, and other drugs on responding maintained by a fixed consecutive number avoidance schedule.
    Evenden J; Ko T
    Psychopharmacology (Berl); 2005 Jul; 180(2):294-305. PubMed ID: 15717210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral modifications in relation to hypothyroidism and hyperthyroidism in adult rats.
    Fundaro A
    Prog Neuropsychopharmacol Biol Psychiatry; 1989; 13(6):927-40. PubMed ID: 2813810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of risperidone, clozapine and the 5-HT6 antagonist GSK-742457 on PCP-induced deficits in reversal learning in the two-lever operant task in male Sprague Dawley rats.
    de Bruin NM; van Drimmelen M; Kops M; van Elk J; Wetering MM; Schwienbacher I
    Behav Brain Res; 2013 May; 244():15-28. PubMed ID: 23384714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interval and ratio reinforcement contingencies as determinants of methadone's effects.
    Thompson T; Honor J; Verchota S; Cleary J
    Pharmacol Biochem Behav; 1984 Nov; 21(5):743-7. PubMed ID: 6514767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavior of rats under fixed consecutive number schedules: effects of drugs of abuse.
    Snodgrass SH; Hardin JL; McMillan DE
    J Exp Anal Behav; 1997 Jul; 68(1):117-32. PubMed ID: 9241864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free operant and discrete trial performance of mice in the nine-hole box apparatus: validation using amphetamine and scopolamine.
    Bensadoun JC; Brooks SP; Dunnett SB
    Psychopharmacology (Berl); 2004 Jul; 174(3):396-405. PubMed ID: 14985934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic reinforcement from operant wheel-running undermines temporal control by fixed-interval schedules of reinforcement.
    Belke TW; Pierce WD; Welsh TM
    Behav Processes; 2018 Dec; 157():91-101. PubMed ID: 30219288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning.
    Yin HH; Knowlton BJ; Balleine BW
    Behav Brain Res; 2006 Jan; 166(2):189-96. PubMed ID: 16153716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity of chronic effects of diazepam on responding of rats under fixed-ratio schedules.
    Smith JB
    Eur J Pharmacol; 1999 Dec; 385(2-3):89-97. PubMed ID: 10607863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of stimulus control and reinforcement frequency in modulating the behavioral effects of d-amphetamine in the rat.
    Rees DC; Wood RW; Laties VG
    J Exp Anal Behav; 1985 Mar; 43(2):243-55. PubMed ID: 3998659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-administered and noncontingent nicotine enhance reinforced operant responding in rats: impact of nicotine dose and reinforcement schedule.
    Chaudhri N; Caggiula AR; Donny EC; Booth S; Gharib M; Craven L; Palmatier MI; Liu X; Sved AF
    Psychopharmacology (Berl); 2007 Feb; 190(3):353-62. PubMed ID: 16847680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.