These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34232883)

  • 1. Generalizable Sample-Efficient Siamese Autoencoder for Tinnitus Diagnosis in Listeners With Subjective Tinnitus.
    Liu Z; Yao L; Wang X; Monaghan JJM; Schaette R; He Z; McAlpine D
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1452-1461. PubMed ID: 34232883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Neurofeedback therapy in the treatment of tinnitus].
    Zhao ZQ; Lei GX; Li YL; Zhang D; Shen WD; Yang SM; Qiao YH
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2018 Feb; 32(3):233-236. PubMed ID: 29775031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-Subject Tinnitus Diagnosis Based on Multi-Band EEG Contrastive Representation Learning.
    Wang CD; Zhu XR; Zhou X; Li J; Lan L; Huang D; Zheng Y; Cai Y
    IEEE J Biomed Health Inform; 2023 Jul; 27(7):3187-3197. PubMed ID: 37018100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A portable neurofeedback device for treating chronic subjective tinnitus: Feasibility and results of a pilot study.
    Guillard R; Fraysse MJ; Simeon R; Cervoni T; Schmutz J; Piedfort B; Ferat V; Congedo M; Londero A
    Prog Brain Res; 2021; 260():167-185. PubMed ID: 33637216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Neurofeedback for the treatment of chronic tinnitus : Review and future perspectives].
    Kleinjung T; Thüring C; Güntensperger D; Neff P; Meyer M
    HNO; 2018 Mar; 66(3):198-204. PubMed ID: 29143096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An EEG channel selection method for motor imagery based brain-computer interface and neurofeedback using Granger causality.
    Varsehi H; Firoozabadi SMP
    Neural Netw; 2021 Jan; 133():193-206. PubMed ID: 33220643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An interpretable tinnitus prediction framework using gap-prepulse inhibition in auditory late response and electroencephalogram.
    Hussain I; Kwon C; Noh TS; Kim HC; Suh MW; Ku Y
    Comput Methods Programs Biomed; 2024 Oct; 255():108371. PubMed ID: 39173295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft boundary-based neurofeedback training based on fuzzy similarity measures: A method for learning how to control EEG Signal features during neurofeedback training.
    Sho'ouri N
    J Neurosci Methods; 2020 Sep; 343():108805. PubMed ID: 32544535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Neurofeedback-based EEG alpha and EEG beta training. Effectiveness in patients with chronically decompensated tinnitus].
    Schenk S; Lamm K; Gündel H; Ladwig KH
    HNO; 2005 Jan; 53(1):29-37. PubMed ID: 15565424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new neurofeedback training method based on feature space clustering to control EEG features within target clusters.
    Sho'ouri N
    J Neurosci Methods; 2021 Oct; 362():109304. PubMed ID: 34363925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining neurofeedback with source estimation: Evaluation of an sLORETA neurofeedback protocol for chronic tinnitus treatment.
    Güntensperger D; Kleinjung T; Neff P; Thüring C; Meyer M
    Restor Neurol Neurosci; 2020; 38(4):283-299. PubMed ID: 32675432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Tinnitus Treatment Outcomes Based on EEG Sensors and TFI Score Using Deep Learning.
    Doborjeh M; Liu X; Doborjeh Z; Shen Y; Searchfield G; Sanders P; Wang GY; Sumich A; Yan WQ
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning End-to-End Approach for the Prediction of Tinnitus based on EEG Data
    Allgaier J; Neff P; Schlee W; Schoisswohl S; Pryss R
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():816-819. PubMed ID: 34891415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurofeedback for subjective tinnitus patients.
    Crocetti A; Forti S; Del Bo L
    Auris Nasus Larynx; 2011 Dec; 38(6):735-8. PubMed ID: 21592701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Latent Growth Curve modeling to predict individual trajectories during neurofeedback treatment for tinnitus.
    Riha C; Güntensperger D; Oschwald J; Kleinjung T; Meyer M
    Prog Brain Res; 2021; 263():109-136. PubMed ID: 34243885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition.
    Chai X; Wang Q; Zhao Y; Liu X; Bai O; Li Y
    Comput Biol Med; 2016 Dec; 79():205-214. PubMed ID: 27810626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Side-Aware Meta-Learning for Cross-Dataset Listener Diagnosis With Subjective Tinnitus.
    Liu Z; Li Y; Yao L; Lucas M; Monaghan JJM; Zhang Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2352-2361. PubMed ID: 35998167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Psychophysiological treatment of chronic tinnitus: A review.
    Czornik M; Malekshahi A; Mahmoud W; Wolpert S; Birbaumer N
    Clin Psychol Psychother; 2022 Jul; 29(4):1236-1253. PubMed ID: 34994043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Objective Recognition of Tinnitus Location Using Electroencephalography Connectivity Features.
    Li Z; Wang X; Shen W; Yang S; Zhao DY; Hu J; Wang D; Liu J; Xin H; Zhang Y; Li P; Zhang B; Cai H; Liang Y; Li X
    Front Neurosci; 2021; 15():784721. PubMed ID: 35058742
    [No Abstract]   [Full Text] [Related]  

  • 20. Deep Learning Approach for Epileptic Focus Localization.
    Daoud H; Bayoumi M
    IEEE Trans Biomed Circuits Syst; 2020 Apr; 14(2):209-220. PubMed ID: 31796417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.