These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34233001)

  • 1. Guanidine-II aptamer conformations and ligand binding modes through the lens of molecular simulation.
    Steuer J; Kukharenko O; Riedmiller K; Hartig JS; Peter C
    Nucleic Acids Res; 2021 Aug; 49(14):7954-7965. PubMed ID: 34233001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics Simulations of the Aptamer Domain of Guanidinium Ion Binding Riboswitch
    Negi I; Mahmi AS; Seelam Prabhakar P; Sharma P
    J Chem Inf Model; 2021 Oct; 61(10):5243-5255. PubMed ID: 34609872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer.
    Bao L; Wang J; Xiao Y
    Phys Rev E; 2019 Aug; 100(2-1):022412. PubMed ID: 31574664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into ligand binding to PreQ1 Riboswitch Aptamer from molecular dynamics simulations.
    Gong Z; Zhao Y; Chen C; Duan Y; Xiao Y
    PLoS One; 2014; 9(3):e92247. PubMed ID: 24663240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for ligand binding to the guanidine-II riboswitch.
    Reiss CW; Strobel SA
    RNA; 2017 Sep; 23(9):1338-1343. PubMed ID: 28600356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for guanidine sensing by the
    Battaglia RA; Price IR; Ke A
    RNA; 2017 Apr; 23(4):578-585. PubMed ID: 28096518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation.
    Gong Z; Zhao Y; Chen C; Xiao Y
    J Biomol Struct Dyn; 2011 Oct; 29(2):403-16. PubMed ID: 21875158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Basis for Ligand Binding to the Guanidine-I Riboswitch.
    Reiss CW; Xiong Y; Strobel SA
    Structure; 2017 Jan; 25(1):195-202. PubMed ID: 28017522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation on the allosteric analysis of the c-di-GMP class I riboswitch induced by ligand binding.
    Li C; Zhao X; Xie P; Hu J; Bi H
    J Mol Recognit; 2019 Jan; 32(1):e2756. PubMed ID: 30033590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch.
    Di Palma F; Colizzi F; Bussi G
    RNA; 2013 Nov; 19(11):1517-24. PubMed ID: 24051105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical Validation of a Fourth Guanidine Riboswitch Class in Bacteria.
    Salvail H; Balaji A; Yu D; Roth A; Breaker RR
    Biochemistry; 2020 Dec; 59(49):4654-4662. PubMed ID: 33236895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An uncommon [K
    Trachman RJ; Ferré-D'Amaré AR
    RNA; 2021 Oct; 27(10):1257-1264. PubMed ID: 34257148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TPP riboswitch aptamer: Role of Mg
    Padhi S; Pradhan M; Bung N; Roy A; Bulusu G
    J Mol Graph Model; 2019 May; 88():282-291. PubMed ID: 30818079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy.
    Ruff KM; Strobel SA
    RNA; 2014 Nov; 20(11):1775-88. PubMed ID: 25246650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical Validation of a Second Guanidine Riboswitch Class in Bacteria.
    Sherlock ME; Malkowski SN; Breaker RR
    Biochemistry; 2017 Jan; 56(2):352-358. PubMed ID: 28001368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical Validation of a Third Guanidine Riboswitch Class in Bacteria.
    Sherlock ME; Breaker RR
    Biochemistry; 2017 Jan; 56(2):359-363. PubMed ID: 28001372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand Binding Mechanism and Its Relationship with Conformational Changes in Adenine Riboswitch.
    Hu G; Li H; Xu S; Wang J
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32168940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using reweighted pulling simulations to characterize conformational changes in riboswitches.
    Di Palma F; Colizzi F; Bussi G
    Methods Enzymol; 2015; 553():139-62. PubMed ID: 25726464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation on the Thermosinus carboxydivorans pfl ZTP riboswitch by ligand binding.
    Yu-Nan H; Kang W; Yu S; Xiao-Jun X; Yan W; Xing-Ao L; Ting-Ting S
    Biochem Biophys Res Commun; 2022 Oct; 627():184-190. PubMed ID: 36044800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic-scale characterization of conformational changes in the preQ₁ riboswitch aptamer upon ligand binding.
    Petrone PM; Dewhurst J; Tommasi R; Whitehead L; Pomerantz AK
    J Mol Graph Model; 2011 Sep; 30():179-85. PubMed ID: 21831681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.