These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 34233430)

  • 21. A sericin/ graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone.
    Qi C; Deng Y; Xu L; Yang C; Zhu Y; Wang G; Wang Z; Wang L
    Theranostics; 2020; 10(2):741-756. PubMed ID: 31903148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats.
    Luo Y; Shen H; Fang Y; Cao Y; Huang J; Zhang M; Dai J; Shi X; Zhang Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6331-9. PubMed ID: 25741576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene in Regenerative Medicine: Focus on Stem Cells and Neuronal Differentiation.
    Gardin C; Piattelli A; Zavan B
    Trends Biotechnol; 2016 Jun; 34(6):435-437. PubMed ID: 26879187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of Graphene Based Nanotechnology in Stem Cells Research.
    Hu S; Zeng Y; Yang S; Qin H; Cai H; Wang J
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6327-41. PubMed ID: 26716188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PEGylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing.
    Chu J; Shi P; Yan W; Fu J; Yang Z; He C; Deng X; Liu H
    Nanoscale; 2018 May; 10(20):9547-9560. PubMed ID: 29745944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth.
    Zhang K; Zheng H; Liang S; Gao C
    Acta Biomater; 2016 Jun; 37():131-42. PubMed ID: 27063493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Poly(Ethylene Glycol) Functionalized Graphene Oxide in Tissue Engineering: A Review on Recent Advances.
    Ghosh S; Chatterjee K
    Int J Nanomedicine; 2020; 15():5991-6006. PubMed ID: 33192060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.
    Shadjou N; Hasanzadeh M
    J Biomed Mater Res A; 2016 May; 104(5):1250-75. PubMed ID: 26748447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two- and Three-Dimensional All-Carbon Nanomaterial Assemblies for Tissue Engineering and Regenerative Medicine.
    Lalwani G; Patel SC; Sitharaman B
    Ann Biomed Eng; 2016 Jun; 44(6):2020-35. PubMed ID: 27126776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced graphene oxide membranes in ocular regenerative medicine.
    Zambrano-Andazol I; Vázquez N; Chacón M; Sánchez-Avila RM; Persinal M; Blanco C; González Z; Menéndez R; Sierra M; Fernández-Vega Á; Sánchez T; Merayo-Lloves J; Meana Á
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111075. PubMed ID: 32993970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene Based Materials in Neural Tissue Regeneration.
    Aydin T; Gurcan C; Taheri H; Yilmazer A
    Adv Exp Med Biol; 2018; 1107():129-142. PubMed ID: 29882208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphene for the development of the next-generation of biocomposites for dental and medical applications.
    Xie H; Cao T; Rodríguez-Lozano FJ; Luong-Van EK; Rosa V
    Dent Mater; 2017 Jul; 33(7):765-774. PubMed ID: 28495017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A biocompatible vascularized graphene oxide (GO)-collagen chamber with osteoinductive and anti-fibrosis effects promotes bone regeneration
    Fang H; Luo C; Liu S; Zhou M; Zeng Y; Hou J; Chen L; Mou S; Sun J; Wang Z
    Theranostics; 2020; 10(6):2759-2772. PubMed ID: 32194833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue engineering and regenerative medicine approaches to enhance the functional response to skeletal muscle injury.
    Sicari BM; Dearth CL; Badylak SF
    Anat Rec (Hoboken); 2014 Jan; 297(1):51-64. PubMed ID: 24293290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanogels for regenerative medicine.
    Grimaudo MA; Concheiro A; Alvarez-Lorenzo C
    J Control Release; 2019 Nov; 313():148-160. PubMed ID: 31629040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine.
    Flégeau K; Pace R; Gautier H; Rethore G; Guicheux J; Le Visage C; Weiss P
    Adv Colloid Interface Sci; 2017 Sep; 247():589-609. PubMed ID: 28754381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review.
    Bacakova L; Zarubova J; Travnickova M; Musilkova J; Pajorova J; Slepicka P; Kasalkova NS; Svorcik V; Kolska Z; Motarjemi H; Molitor M
    Biotechnol Adv; 2018; 36(4):1111-1126. PubMed ID: 29563048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing regenerative approaches with nanoparticles.
    van Rijt S; Habibovic P
    J R Soc Interface; 2017 Apr; 14(129):. PubMed ID: 28404870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Researches on regenerative medicine-current state and prospect.
    Wang ZG; Xiao K
    Chin J Traumatol; 2012; 15(5):259-67. PubMed ID: 23069095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lessons from developmental biology for regenerative medicine.
    Turner NJ; Keane TJ; Badylak SF
    Birth Defects Res C Embryo Today; 2013 Sep; 99(3):149-59. PubMed ID: 24078493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.