BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34233454)

  • 21. The role of macrophage transcription factor MafB in atherosclerotic plaque stability.
    Hasegawa H; Watanabe T; Kato S; Toshima T; Yokoyama M; Aida Y; Nishiwaki M; Kadowaki S; Narumi T; Honda Y; Otaki Y; Honda S; Shunsuke N; Funayama A; Nishiyama S; Takahashi H; Arimoto T; Shishido T; Miyamoto T; Abe S; Shibata Y; Kubota I
    Atherosclerosis; 2016 Jul; 250():133-43. PubMed ID: 27214395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CD147 Sparks Atherosclerosis by Driving M1 Phenotype and Impairing Efferocytosis.
    Lv JJ; Wang H; Zhang C; Zhang TJ; Wei HL; Liu ZK; Ma YH; Yang Z; He Q; Wang LJ; Duan LL; Chen ZN; Bian H
    Circ Res; 2024 Jan; 134(2):165-185. PubMed ID: 38166463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deficiency in lymphotoxin β receptor protects from atherosclerosis in apoE-deficient mice.
    Grandoch M; Feldmann K; Göthert JR; Dick LS; Homann S; Klatt C; Bayer JK; Waldheim JN; Rabausch B; Nagy N; Oberhuber A; Deenen R; Köhrer K; Lehr S; Homey B; Pfeffer K; Fischer JW
    Circ Res; 2015 Apr; 116(8):e57-68. PubMed ID: 25740843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition.
    Zhu Z; Hua B; Shang Z; Yuan G; Xu L; Li E; Li X; Sun N; Yan Z; Qian R; Lu C
    Biomed Res Int; 2016; 2016():5438589. PubMed ID: 27631008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteoglycan 4 regulates macrophage function without altering atherosclerotic lesion formation in a murine bone marrow-specific deletion model.
    Nahon JE; Hoekstra M; Havik SR; Van Santbrink PJ; Dallinga-Thie GM; Kuivenhoven JA; Geerling JJ; Van Eck M
    Atherosclerosis; 2018 Jul; 274():120-127. PubMed ID: 29772480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Macrophage p53 controls macrophage death in atherosclerotic lesions of apolipoprotein E deficient mice.
    Boesten LS; Zadelaar AS; van Nieuwkoop A; Hu L; Teunisse AF; Jochemsen AG; Evers B; van de Water B; Gijbels MJ; van Vlijmen BJ; Havekes LM; de Winther MP
    Atherosclerosis; 2009 Dec; 207(2):399-404. PubMed ID: 19608184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-Lethal Sonodynamic Therapy Inhibits Atherosclerotic Plaque Progression in ApoE-/- Mice and Attenuates ox-LDL-mediated Macrophage Impairment by Inducing Heme Oxygenase-1.
    Wang Y; Wang W; Xu H; Sun Y; Sun J; Jiang Y; Yao J; Tian Y
    Cell Physiol Biochem; 2017; 41(6):2432-2446. PubMed ID: 28468003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ERV1/ChemR23 Signaling Protects Against Atherosclerosis by Modifying Oxidized Low-Density Lipoprotein Uptake and Phagocytosis in Macrophages.
    Laguna-Fernandez A; Checa A; Carracedo M; Artiach G; Petri MH; Baumgartner R; Forteza MJ; Jiang X; Andonova T; Walker ME; Dalli J; Arnardottir H; Gisterå A; Thul S; Wheelock CE; Paulsson-Berne G; Ketelhuth DFJ; Hansson GK; Bäck M
    Circulation; 2018 Oct; 138(16):1693-1705. PubMed ID: 29739755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Macrophage Inflammation, Erythrophagocytosis, and Accelerated Atherosclerosis in Jak2
    Wang W; Liu W; Fidler T; Wang Y; Tang Y; Woods B; Welch C; Cai B; Silvestre-Roig C; Ai D; Yang YG; Hidalgo A; Soehnlein O; Tabas I; Levine RL; Tall AR; Wang N
    Circ Res; 2018 Nov; 123(11):e35-e47. PubMed ID: 30571460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype.
    Vengrenyuk Y; Nishi H; Long X; Ouimet M; Savji N; Martinez FO; Cassella CP; Moore KJ; Ramsey SA; Miano JM; Fisher EA
    Arterioscler Thromb Vasc Biol; 2015 Mar; 35(3):535-46. PubMed ID: 25573853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bone marrow deficiency of TRPC3 channel reduces early lesion burden and necrotic core of advanced plaques in a mouse model of atherosclerosis.
    Tano JY; Solanki S; Lee RH; Smedlund K; Birnbaumer L; Vazquez G
    Cardiovasc Res; 2014 Jan; 101(1):138-44. PubMed ID: 24101197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mineralocorticoid Receptor Deficiency in Macrophages Inhibits Atherosclerosis by Affecting Foam Cell Formation and Efferocytosis.
    Shen ZX; Chen XQ; Sun XN; Sun JY; Zhang WC; Zheng XJ; Zhang YY; Shi HJ; Zhang JW; Li C; Wang J; Liu X; Duan SZ
    J Biol Chem; 2017 Jan; 292(3):925-935. PubMed ID: 27881672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNA-21 deficiency attenuated atherogenesis and decreased macrophage infiltration by targeting Dusp-8.
    Gao L; Zeng H; Zhang T; Mao C; Wang Y; Han Z; Chen K; Zhang J; Fan Y; Gu J; Wang C
    Atherosclerosis; 2019 Dec; 291():78-86. PubMed ID: 31704554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Endothelial Cell-Derived Von Willebrand Factor, But Not Platelet-Derived, Promotes Atherosclerosis in Apolipoprotein E-Deficient Mice.
    Doddapattar P; Dhanesha N; Chorawala MR; Tinsman C; Jain M; Nayak MK; Staber JM; Chauhan AK
    Arterioscler Thromb Vasc Biol; 2018 Mar; 38(3):520-528. PubMed ID: 29348121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Macrophage SR-BI mediates efferocytosis via Src/PI3K/Rac1 signaling and reduces atherosclerotic lesion necrosis.
    Tao H; Yancey PG; Babaev VR; Blakemore JL; Zhang Y; Ding L; Fazio S; Linton MF
    J Lipid Res; 2015 Aug; 56(8):1449-60. PubMed ID: 26059978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reversal of hypoxia in murine atherosclerosis prevents necrotic core expansion by enhancing efferocytosis.
    Marsch E; Theelen TL; Demandt JA; Jeurissen M; van Gink M; Verjans R; Janssen A; Cleutjens JP; Meex SJ; Donners MM; Haenen GR; Schalkwijk CG; Dubois LJ; Lambin P; Mallat Z; Gijbels MJ; Heemskerk JW; Fisher EA; Biessen EA; Janssen BJ; Daemen MJ; Sluimer JC
    Arterioscler Thromb Vasc Biol; 2014 Dec; 34(12):2545-53. PubMed ID: 25256233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1.
    Zhang L; Cheng H; Yue Y; Li S; Zhang D; He R
    Cardiovasc Pathol; 2018; 33():6-15. PubMed ID: 29268138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice.
    Manning-Tobin JJ; Moore KJ; Seimon TA; Bell SA; Sharuk M; Alvarez-Leite JI; de Winther MP; Tabas I; Freeman MW
    Arterioscler Thromb Vasc Biol; 2009 Jan; 29(1):19-26. PubMed ID: 18948635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Endothelin-1 overexpression exacerbates atherosclerosis and induces aortic aneurysms in apolipoprotein E knockout mice.
    Li MW; Mian MO; Barhoumi T; Rehman A; Mann K; Paradis P; Schiffrin EL
    Arterioscler Thromb Vasc Biol; 2013 Oct; 33(10):2306-15. PubMed ID: 23887640
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nrf2 in bone marrow-derived cells positively contributes to the advanced stage of atherosclerotic plaque formation.
    Harada N; Ito K; Hosoya T; Mimura J; Maruyama A; Noguchi N; Yagami K; Morito N; Takahashi S; Maher JM; Yamamoto M; Itoh K
    Free Radic Biol Med; 2012 Dec; 53(12):2256-62. PubMed ID: 23051009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.