BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34233454)

  • 81. Silencing of CD40 in vivo reduces progression of experimental atherogenesis through an NF-κB/miR-125b axis and reveals new potential mediators in the pathogenesis of atherosclerosis.
    Hueso M; De Ramon L; Navarro E; Ripoll E; Cruzado JM; Grinyo JM; Torras J
    Atherosclerosis; 2016 Dec; 255():80-89. PubMed ID: 27835742
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Deletion of bone marrow-derived receptor for advanced glycation end products inhibits atherosclerotic plaque progression.
    Morris-Rosenfeld S; Blessing E; Preusch MR; Albrecht C; Bierhaus A; Andrassy M; Nawroth PP; Rosenfeld ME; Katus HA; Bea F
    Eur J Clin Invest; 2011 Nov; 41(11):1164-71. PubMed ID: 21418204
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Deletion or Inhibition of NOD1 Favors Plaque Stability and Attenuates Atherothrombosis in Advanced Atherogenesis
    González-Ramos S; Fernández-García V; Recalde M; Rodríguez C; Martínez-González J; Andrés V; Martín-Sanz P; Boscá L
    Cells; 2020 Sep; 9(9):. PubMed ID: 32927803
    [TBL] [Abstract][Full Text] [Related]  

  • 84. EphA2 knockdown attenuates atherosclerotic lesion development in ApoE(-/-) mice.
    Jiang H; Li X; Zhang X; Liu Y; Huang S; Wang X
    Cardiovasc Pathol; 2014; 23(3):169-74. PubMed ID: 24561077
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Progranulin in the hematopoietic compartment protects mice from atherosclerosis.
    Nguyen AD; Nguyen TA; Singh RK; Eberlé D; Zhang J; Abate JP; Robles A; Koliwad S; Huang EJ; Maxfield FR; Walther TC; Farese RV
    Atherosclerosis; 2018 Oct; 277():145-154. PubMed ID: 30212683
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Potent Vasoconstrictor Kisspeptin-10 Induces Atherosclerotic Plaque Progression and Instability: Reversal by its Receptor GPR54 Antagonist.
    Sato K; Shirai R; Hontani M; Shinooka R; Hasegawa A; Kichise T; Yamashita T; Yoshizawa H; Watanabe R; Matsuyama TA; Ishibashi-Ueda H; Koba S; Kobayashi Y; Hirano T; Watanabe T
    J Am Heart Assoc; 2017 Apr; 6(4):. PubMed ID: 28411243
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Apoptosis signal-regulating kinase 1 deficiency accelerates hyperlipidemia-induced atheromatous plaques via suppression of macrophage apoptosis.
    Yamada S; Ding Y; Tanimoto A; Wang KY; Guo X; Li Z; Tasaki T; Nabesima A; Murata Y; Shimajiri S; Kohno K; Ichijo H; Sasaguri Y
    Arterioscler Thromb Vasc Biol; 2011 Jul; 31(7):1555-64. PubMed ID: 21527753
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Simvastatin suppresses apoptosis in vulnerable atherosclerotic plaques through regulating the expression of p(53), Bcl-2 and Bcl-xL.
    Qin W; Lu Y; Zhan C; Shen T; Dou L; Man Y; Wang S; Xiao C; Bian Y; Li J
    Cardiovasc Drugs Ther; 2012 Feb; 26(1):23-30. PubMed ID: 22038096
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Targeted invalidation of SR-B1 in macrophages reduces macrophage apoptosis and accelerates atherosclerosis.
    Galle-Treger L; Moreau M; Ballaire R; Poupel L; Huby T; Sasso E; Troise F; Poti F; Lesnik P; Le Goff W; Gautier EL; Huby T
    Cardiovasc Res; 2020 Mar; 116(3):554-565. PubMed ID: 31119270
    [TBL] [Abstract][Full Text] [Related]  

  • 90. SM22α (Smooth Muscle Protein 22-α) Promoter-Driven IGF1R (Insulin-Like Growth Factor 1 Receptor) Deficiency Promotes Atherosclerosis.
    Sukhanov S; Higashi Y; Shai SY; Snarski P; Danchuk S; D'Ambra V; Tabony M; Woods TC; Hou X; Li Z; Ozoe A; Chandrasekar B; Takahashi SI; Delafontaine P
    Arterioscler Thromb Vasc Biol; 2018 Oct; 38(10):2306-2317. PubMed ID: 30354209
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Smooth muscle cell-specific insulin-like growth factor-1 overexpression in Apoe-/- mice does not alter atherosclerotic plaque burden but increases features of plaque stability.
    Shai SY; Sukhanov S; Higashi Y; Vaughn C; Kelly J; Delafontaine P
    Arterioscler Thromb Vasc Biol; 2010 Oct; 30(10):1916-24. PubMed ID: 20671230
    [TBL] [Abstract][Full Text] [Related]  

  • 92. MicroRNA-202-5p-dependent inhibition of Bcl-2 contributes to macrophage apoptosis and atherosclerotic plaque formation.
    Xu F; Yao F; Ning Y
    Gene; 2023 May; 867():147366. PubMed ID: 36931409
    [TBL] [Abstract][Full Text] [Related]  

  • 93. TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE(-/-) mice.
    Sakamuri SSVP; Higashi Y; Sukhanov S; Siddesha JM; Delafontaine P; Siebenlist U; Chandrasekar B
    Atherosclerosis; 2016 Sep; 252():153-160. PubMed ID: 27237075
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Advanced glycation end-product Nε-carboxymethyl-Lysine accelerates progression of atherosclerotic calcification in diabetes.
    Wang Z; Jiang Y; Liu N; Ren L; Zhu Y; An Y; Chen D
    Atherosclerosis; 2012 Apr; 221(2):387-96. PubMed ID: 22305260
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Pioglitazone-Incorporated Nanoparticles Prevent Plaque Destabilization and Rupture by Regulating Monocyte/Macrophage Differentiation in ApoE-/- Mice.
    Nakashiro S; Matoba T; Umezu R; Koga J; Tokutome M; Katsuki S; Nakano K; Sunagawa K; Egashira K
    Arterioscler Thromb Vasc Biol; 2016 Mar; 36(3):491-500. PubMed ID: 26821947
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Mst1 participates in the atherosclerosis progression through macrophage autophagy inhibition and macrophage apoptosis enhancement.
    Wang T; Zhang L; Hu J; Duan Y; Zhang M; Lin J; Man W; Pan X; Jiang Z; Zhang G; Gao B; Wang H; Sun D
    J Mol Cell Cardiol; 2016 Sep; 98():108-16. PubMed ID: 27496379
    [TBL] [Abstract][Full Text] [Related]  

  • 97. K-80003 Inhibition of Macrophage Apoptosis and Necrotic Core Development in Atherosclerotic Vulnerable Plaques.
    Wang X; Sun Z; Yuan R; Zhang W; Shen Y; Yin A; Li Y; Ji Q; Wang X; Li Y; Zhang M; Pan X; Shen L; He B
    Cardiovasc Drugs Ther; 2022 Dec; 36(6):1061-1073. PubMed ID: 34410548
    [TBL] [Abstract][Full Text] [Related]  

  • 98. HDL is essential for atherosclerotic lesion regression in Apoe knockout mice by bone marrow Apoe reconstitution.
    van der Sluis RJ; Verwilligen RAF; Lendvai Z; Wever R; Hoekstra M; Van Eck M
    Atherosclerosis; 2018 Nov; 278():240-249. PubMed ID: 30340108
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Loss of one copy of Zfp148 reduces lesional macrophage proliferation and atherosclerosis in mice by activating p53.
    Sayin VI; Khan OM; Pehlivanoglu LE; Staffas A; Ibrahim MX; Asplund A; Agren P; Nilton A; Bergström G; Bergo MO; Borén J; Lindahl P
    Circ Res; 2014 Oct; 115(9):781-9. PubMed ID: 25212213
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Mechanisms and consequences of macrophage apoptosis in atherosclerosis.
    Seimon T; Tabas I
    J Lipid Res; 2009 Apr; 50 Suppl(Suppl):S382-7. PubMed ID: 18953058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.