These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 34233614)
1. Transcriptomic analysis of temporal shifts in berry development between two grapevine cultivars of the Pinot family reveals potential genes controlling ripening time. Theine J; Holtgräwe D; Herzog K; Schwander F; Kicherer A; Hausmann L; Viehöver P; Töpfer R; Weisshaar B BMC Plant Biol; 2021 Jul; 21(1):327. PubMed ID: 34233614 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. Pilati S; Perazzolli M; Malossini A; Cestaro A; Demattè L; Fontana P; Dal Ri A; Viola R; Velasco R; Moser C BMC Genomics; 2007 Nov; 8():428. PubMed ID: 18034875 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomics of the grape berry shrivel ripening disorder. Savoi S; Herrera JC; Forneck A; Griesser M Plant Mol Biol; 2019 Jun; 100(3):285-301. PubMed ID: 30941542 [TBL] [Abstract][Full Text] [Related]
5. Comparative RNA-Seq profiling of berry development between table grape 'Kyoho' and its early-ripening mutant 'Fengzao'. Guo DL; Xi FF; Yu YH; Zhang XY; Zhang GH; Zhong GY BMC Genomics; 2016 Oct; 17(1):795. PubMed ID: 27729006 [TBL] [Abstract][Full Text] [Related]
6. Timing and Order of the Molecular Events Marking the Onset of Berry Ripening in Grapevine. Fasoli M; Richter CL; Zenoni S; Bertini E; Vitulo N; Dal Santo S; Dokoozlian N; Pezzotti M; Tornielli GB Plant Physiol; 2018 Nov; 178(3):1187-1206. PubMed ID: 30224433 [TBL] [Abstract][Full Text] [Related]
7. Interaction analysis of grapevine MIKC(c)-type MADS transcription factors and heterologous expression of putative véraison regulators in tomato. Mellway RD; Lund ST J Plant Physiol; 2013 Nov; 170(16):1424-33. PubMed ID: 23787144 [TBL] [Abstract][Full Text] [Related]
8. Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling. Lijavetzky D; Carbonell-Bejerano P; Grimplet J; Bravo G; Flores P; Fenoll J; Hellín P; Oliveros JC; Martínez-Zapater JM PLoS One; 2012; 7(6):e39547. PubMed ID: 22768087 [TBL] [Abstract][Full Text] [Related]
9. Genotyping-by-sequencing-based high-resolution mapping reveals a single candidate gene for the grapevine veraison locus Ver1. Frenzke L; Röckel F; Wenke T; Schwander F; Grützmann K; Naumann J; Zakrzewski F; Heinekamp T; Maglione M; Wenke A; Kögler A; Zyprian E; Dahl A; Förster F; Töpfer R; Wanke S Plant Physiol; 2024 Sep; 196(1):244-260. PubMed ID: 38743690 [TBL] [Abstract][Full Text] [Related]
10. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit. Rienth M; Torregrosa L; Luchaire N; Chatbanyong R; Lecourieux D; Kelly MT; Romieu C BMC Plant Biol; 2014 Apr; 14():108. PubMed ID: 24774299 [TBL] [Abstract][Full Text] [Related]
11. Selection of candidate genes controlling veraison time in grapevine through integration of meta-QTL and transcriptomic data. Delfino P; Zenoni S; Imanifard Z; Tornielli GB; Bellin D BMC Genomics; 2019 Oct; 20(1):739. PubMed ID: 31615398 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality. Zombardo A; Crosatti C; Bagnaresi P; Bassolino L; Reshef N; Puccioni S; Faccioli P; Tafuri A; Delledonne M; Fait A; Storchi P; Cattivelli L; Mica E BMC Genomics; 2020 Jul; 21(1):468. PubMed ID: 32641089 [TBL] [Abstract][Full Text] [Related]
13. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis. Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654 [TBL] [Abstract][Full Text] [Related]
14. The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin. Pilati S; Brazzale D; Guella G; Milli A; Ruberti C; Biasioli F; Zottini M; Moser C BMC Plant Biol; 2014 Apr; 14():87. PubMed ID: 24693871 [TBL] [Abstract][Full Text] [Related]
15. Alternative splicing regulation appears to play a crucial role in grape berry development and is also potentially involved in adaptation responses to the environment. Maillot P; Velt A; Rustenholz C; Butterlin G; Merdinoglu D; Duchêne E BMC Plant Biol; 2021 Oct; 21(1):487. PubMed ID: 34696712 [TBL] [Abstract][Full Text] [Related]
16. A comparative study of ripening among berries of the grape cluster reveals an altered transcriptional programme and enhanced ripening rate in delayed berries. Gouthu S; O'Neil ST; Di Y; Ansarolia M; Megraw M; Deluc LG J Exp Bot; 2014 Nov; 65(20):5889-902. PubMed ID: 25135520 [TBL] [Abstract][Full Text] [Related]
17. The contribution of flowering time and seed content to uneven ripening initiation among fruits within Vitis vinifera L. cv. Pinot noir clusters. Vondras AM; Gouthu S; Schmidt JA; Petersen AR; Deluc LG Planta; 2016 May; 243(5):1191-202. PubMed ID: 26874729 [TBL] [Abstract][Full Text] [Related]
18. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. Ghan R; Petereit J; Tillett RL; Schlauch KA; Toubiana D; Fait A; Cramer GR BMC Plant Biol; 2017 May; 17(1):94. PubMed ID: 28558655 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome profiling and identification of the functional genes involved in berry development and ripening in Vitis vinifera. Ma Q; Yang J Gene; 2019 Jan; 680():84-96. PubMed ID: 30257181 [TBL] [Abstract][Full Text] [Related]
20. Differential expression of transcription factor- and further growth-related genes correlates with contrasting cluster architecture in Vitis vinifera 'Pinot Noir' and Vitis spp. genotypes. Richter R; Rossmann S; Gabriel D; Töpfer R; Theres K; Zyprian E Theor Appl Genet; 2020 Dec; 133(12):3249-3272. PubMed ID: 32812062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]