These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34233622)

  • 41. Modelling under-reporting in epidemics.
    Gamado KM; Streftaris G; Zachary S
    J Math Biol; 2014 Sep; 69(3):737-65. PubMed ID: 23942791
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Transmissibility and severity of the pandemic influenza A (H1N1) 2009 virus in Spain].
    Simón Méndez L; de Mateo Ontañón S; Larrauri Cámara A; Jiménez-Jorge S; Vaqué Rafart J; Pérez Hoyos S;
    Gac Sanit; 2011; 25(4):296-302. PubMed ID: 21543138
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of asymptomatic infections for the effectiveness of facemasks during pandemic influenza.
    Cui J; Zhang Y; Feng ZL; Guo SB; Zhang Y
    Math Biosci Eng; 2019 May; 16(5):3936-3946. PubMed ID: 31499643
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identifying the number of unreported cases in SIR epidemic models.
    Ducrot A; Magal P; Nguyen T; Webb GF
    Math Med Biol; 2020 May; 37(2):243-261. PubMed ID: 31271207
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Estimation of the reproductive number for the 2009 pandemic H1N1 influenza in rural and metropolitan New South Wales.
    Buckley D; Bulger D
    Aust J Rural Health; 2011 Apr; 19(2):59-63. PubMed ID: 21438946
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interpreting the transmissibility of the avian influenza A(H7N9) infection from 2013 to 2015 in Zhejiang Province, China.
    Chong KC; Wang X; Liu S; Cai J; Su X; Zee BC; Tam G; Wang MH; Chen E
    Epidemiol Infect; 2016 Jun; 144(8):1584-91. PubMed ID: 26645357
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Epidemic Patchy Model with Entry-Exit Screening.
    Wang X; Liu S; Wang L; Zhang W
    Bull Math Biol; 2015 Jul; 77(7):1237-55. PubMed ID: 25976693
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Bayesian inferential approach to quantify the transmission intensity of disease outbreak.
    Kadi AS; Avaradi SR
    Comput Math Methods Med; 2015; 2015():256319. PubMed ID: 25784956
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unraveling R0: considerations for public health applications.
    Ridenhour B; Kowalik JM; Shay DK
    Am J Public Health; 2014 Feb; 104(2):e32-41. PubMed ID: 24328646
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Model Selection and Evaluation Based on Emerging Infectious Disease Data Sets including A/H1N1 and Ebola.
    Liu W; Tang S; Xiao Y
    Comput Math Methods Med; 2015; 2015():207105. PubMed ID: 26451161
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves.
    Parag KV
    PLoS Comput Biol; 2021 Sep; 17(9):e1009347. PubMed ID: 34492011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The response of medical virology laboratories to the influenza A(H1N1)pdm09 outbreak in Paris Île-de-France region.
    Seringe E; Agut H
    Pathol Biol (Paris); 2013 Oct; 61(5):203-8. PubMed ID: 23273748
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A statistical method utilizing information of imported cases to estimate the transmissibility for an influenza pandemic.
    Chong KC; Zee BC; Wang MH
    BMC Med Res Methodol; 2017 Feb; 17(1):31. PubMed ID: 28222682
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Continued high incidence of children with severe influenza A(H1N1)pdm09 admitted to paediatric intensive care units in Germany during the first three post-pandemic influenza seasons, 2010/11-2012/13.
    Streng A; Prifert C; Weissbrich B; Liese JG;
    BMC Infect Dis; 2015 Dec; 15():573. PubMed ID: 26678835
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modelling the transmission dynamics and control of the novel 2009 swine influenza (H1N1) pandemic.
    Sharomi O; Podder CN; Gumel AB; Mahmud SM; Rubinstein E
    Bull Math Biol; 2011 Mar; 73(3):515-48. PubMed ID: 20379852
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modelling influenza A(H1N1) 2009 epidemics using a random network in a distributed computing environment.
    González-Parra G; Villanueva RJ; Ruiz-Baragaño J; Moraño JA
    Acta Trop; 2015 Mar; 143():29-35. PubMed ID: 25559047
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A lattice model for influenza spreading.
    Liccardo A; Fierro A
    PLoS One; 2013; 8(5):e63935. PubMed ID: 23717512
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of public health interventions on the spread of influenza among cities.
    Lee JM; Choi D; Cho G; Kim Y
    J Theor Biol; 2012 Jan; 293():131-42. PubMed ID: 22033506
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Epidemic modelling: aspects where stochasticity matters.
    Britton T; Lindenstrand D
    Math Biosci; 2009 Dec; 222(2):109-16. PubMed ID: 19837097
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contact intervals, survival analysis of epidemic data, and estimation of R(0).
    Kenah E
    Biostatistics; 2011 Jul; 12(3):548-66. PubMed ID: 21071607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.