These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 34234166)
1. Label-free two-photon imaging of mitochondrial activity in murine macrophages stimulated with bacterial and viral ligands. Allen CH; Ahmed D; Raiche-Tanner O; Chauhan V; Mostaço-Guidolin L; Cassol E; Murugkar S Sci Rep; 2021 Jul; 11(1):14081. PubMed ID: 34234166 [TBL] [Abstract][Full Text] [Related]
2. Optical changes in THP-1 macrophage metabolism in response to pro- and anti-inflammatory stimuli reported by label-free two-photon imaging. Smokelin I; Mizzoni C; Erndt-Marino J; Kaplan D; Georgakoudi I J Biomed Opt; 2020 Jan; 25(1):1-14. PubMed ID: 31953928 [TBL] [Abstract][Full Text] [Related]
3. Autofluorescence Imaging of 3D Tumor-Macrophage Microscale Cultures Resolves Spatial and Temporal Dynamics of Macrophage Metabolism. Heaster TM; Humayun M; Yu J; Beebe DJ; Skala MC Cancer Res; 2020 Dec; 80(23):5408-5423. PubMed ID: 33093167 [TBL] [Abstract][Full Text] [Related]
4. Endogenous Two-Photon Excited Fluorescence Imaging Characterizes Neuron and Astrocyte Metabolic Responses to Manganese Toxicity. Stuntz E; Gong Y; Sood D; Liaudanskaya V; Pouli D; Quinn KP; Alonzo C; Liu Z; Kaplan DL; Georgakoudi I Sci Rep; 2017 Apr; 7(1):1041. PubMed ID: 28432298 [TBL] [Abstract][Full Text] [Related]
5. Rice bran oil ameliorates inflammatory responses by enhancing mitochondrial respiration in murine macrophages. Lee S; Yu S; Park HJ; Jung J; Go GW; Kim W PLoS One; 2019; 14(10):e0222857. PubMed ID: 31603952 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of B-cell lymphoma 2 family proteins alters optical redox ratio, mitochondrial polarization, and cell energetics independent of cell state. Gillette AA; DeStefanis RA; Pritzl SL; Deming DA; Skala MC J Biomed Opt; 2022 May; 27(5):. PubMed ID: 35643815 [TBL] [Abstract][Full Text] [Related]
7. In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish. Miskolci V; Tweed KE; Lasarev MR; Britt EC; Walsh AJ; Zimmerman LJ; McDougal CE; Cronan MR; Fan J; Sauer JD; Skala MC; Huttenlocher A Elife; 2022 Feb; 11():. PubMed ID: 35200139 [TBL] [Abstract][Full Text] [Related]
8. Optical imaging of mitochondrial redox state in rodent model of retinitis pigmentosa. Maleki S; Gopalakrishnan S; Ghanian Z; Sepehr R; Schmitt H; Eells J; Ranji M J Biomed Opt; 2013 Jan; 18(1):16004. PubMed ID: 23291617 [TBL] [Abstract][Full Text] [Related]
9. Deficiency in IL-33/ST2 Axis Reshapes Mitochondrial Metabolism in Lipopolysaccharide-Stimulated Macrophages. Xu H; Sun L; He Y; Yuan X; Niu J; Su J; Li D Front Immunol; 2019; 10():127. PubMed ID: 30774633 [TBL] [Abstract][Full Text] [Related]
10. Label-free metabolic imaging for sensitive and robust monitoring of anti-CD47 immunotherapy response in triple-negative breast cancer. Yang M; Mahanty A; Jin C; Wong ANN; Yoo JS J Immunother Cancer; 2022 Sep; 10(9):. PubMed ID: 36096527 [TBL] [Abstract][Full Text] [Related]
11. Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast. Liu Z; Pouli D; Alonzo CA; Varone A; Karaliota S; Quinn KP; Münger K; Karalis KP; Georgakoudi I Sci Adv; 2018 Mar; 4(3):eaap9302. PubMed ID: 29536043 [TBL] [Abstract][Full Text] [Related]
12. Optical imaging detects metabolic signatures associated with oocyte quality†. Tan TCY; Brown HM; Thompson JG; Mustafa S; Dunning KR Biol Reprod; 2022 Oct; 107(4):1014-1025. PubMed ID: 35863764 [TBL] [Abstract][Full Text] [Related]
13. 3D Optical Cryo-Imaging Method: A Novel Approach to Quantify Renal Mitochondrial Bioenergetics Dysfunction. Mehrvar S; Camara AKS; Ranji M Methods Mol Biol; 2021; 2276():259-270. PubMed ID: 34060048 [TBL] [Abstract][Full Text] [Related]
14. IL-25 stimulates M2 macrophage polarization and thereby promotes mitochondrial respiratory capacity and lipolysis in adipose tissues against obesity. Feng J; Li L; Ou Z; Li Q; Gong B; Zhao Z; Qi W; Zhou T; Zhong J; Cai W; Yang X; Zhao A; Gao G; Yang Z Cell Mol Immunol; 2018 May; 15(5):493-505. PubMed ID: 28194019 [TBL] [Abstract][Full Text] [Related]
15. Nicotinamide effects on the metabolism of human fibroblasts and keratinocytes assessed by quantitative, label-free fluorescence imaging. Liu Z; Chiang CY; Nip J; Feng L; Zhang Y; Rocha S; Georgakoudi I Biomed Opt Express; 2021 Oct; 12(10):6375-6390. PubMed ID: 34745743 [TBL] [Abstract][Full Text] [Related]
16. Measurement of mitochondrial NADH and FAD autofluorescence in live cells. Bartolomé F; Abramov AY Methods Mol Biol; 2015; 1264():263-70. PubMed ID: 25631020 [TBL] [Abstract][Full Text] [Related]
17. The Warburg Effect Occurs Rapidly in Stimulated Human Adult but Not Umbilical Cord Blood Derived Macrophages. Ó Maoldomhnaigh C; Cox DJ; Phelan JJ; Malone FD; Keane J; Basdeo SA Front Immunol; 2021; 12():657261. PubMed ID: 33927724 [TBL] [Abstract][Full Text] [Related]
18. Metabolic imaging with the use of fluorescence lifetime imaging microscopy (FLIM) accurately detects mitochondrial dysfunction in mouse oocytes. Sanchez T; Wang T; Pedro MV; Zhang M; Esencan E; Sakkas D; Needleman D; Seli E Fertil Steril; 2018 Dec; 110(7):1387-1397. PubMed ID: 30446247 [TBL] [Abstract][Full Text] [Related]
19. Metabolic Adaptation of Macrophages as Mechanism of Defense against Crystalline Silica. Marrocco A; Frawley K; Pearce LL; Peterson J; O'Brien JP; Mullett SJ; Wendell SG; St Croix CM; Mischler SE; Ortiz LA J Immunol; 2021 Sep; 207(6):1627-1640. PubMed ID: 34433619 [TBL] [Abstract][Full Text] [Related]
20. NAC attenuates LPS-induced toxicity in aspirin-sensitized mouse macrophages via suppression of oxidative stress and mitochondrial dysfunction. Raza H; John A; Shafarin J PLoS One; 2014; 9(7):e103379. PubMed ID: 25075522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]