BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34234366)

  • 1. Single-cell transcriptome analysis of the zebrafish embryonic trunk.
    Metikala S; Casie Chetty S; Sumanas S
    PLoS One; 2021; 16(7):e0254024. PubMed ID: 34234366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global identification of Smad2 and Eomesodermin targets in zebrafish identifies a conserved transcriptional network in mesendoderm and a novel role for Eomesodermin in repression of ectodermal gene expression.
    Nelson AC; Cutty SJ; Niini M; Stemple DL; Flicek P; Houart C; Bruce AE; Wardle FC
    BMC Biol; 2014 Oct; 12():81. PubMed ID: 25277163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell transcriptomic analysis of zebrafish cranial neural crest reveals spatiotemporal regulation of lineage decisions during development.
    Tatarakis D; Cang Z; Wu X; Sharma PP; Karikomi M; MacLean AL; Nie Q; Schilling TF
    Cell Rep; 2021 Dec; 37(12):110140. PubMed ID: 34936864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell transcriptomic analysis identifies the conversion of zebrafish Etv2-deficient vascular progenitors into skeletal muscle.
    Chestnut B; Casie Chetty S; Koenig AL; Sumanas S
    Nat Commun; 2020 Jun; 11(1):2796. PubMed ID: 32493965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common genetic control of haemangioblast and cardiac development in zebrafish.
    Peterkin T; Gibson A; Patient R
    Development; 2009 May; 136(9):1465-74. PubMed ID: 19297410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional profiling of endogenous germ layer precursor cells identifies dusp4 as an essential gene in zebrafish endoderm specification.
    Brown JL; Snir M; Noushmehr H; Kirby M; Hong SK; Elkahloun AG; Feldman B
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12337-42. PubMed ID: 18719100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foxi transcription factors promote pharyngeal arch development by regulating formation of FGF signaling centers.
    Edlund RK; Ohyama T; Kantarci H; Riley BB; Groves AK
    Dev Biol; 2014 Jun; 390(1):1-13. PubMed ID: 24650709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic profile of early zebrafish PGCs by single cell sequencing.
    Zhang X; Li X; Li R; Zhang Y; Li Y; Li S
    PLoS One; 2019; 14(8):e0220364. PubMed ID: 31412047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ETV6 (TEL1) regulates embryonic hematopoiesis in zebrafish.
    Rasighaemi P; Onnebo SM; Liongue C; Ward AC
    Haematologica; 2015 Jan; 100(1):23-31. PubMed ID: 25281506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maternal Eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos.
    Xu P; Zhu G; Wang Y; Sun J; Liu X; Chen YG; Meng A
    J Mol Cell Biol; 2014 Aug; 6(4):272-85. PubMed ID: 24924767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced expression of the Nodal co-receptor Oep causes loss of mesendodermal competence in zebrafish.
    Vopalensky P; Pralow S; Vastenhouw NL
    Development; 2018 Mar; 145(5):. PubMed ID: 29440298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Initial study on zili functions to the development of the germ layers during zebrafish early embryogenesis].
    Li D; Sun HQ; Zhao J; Lu YL; Deng WQ; Ma YX
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2010 Nov; 41(6):923-6. PubMed ID: 21265086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transdifferentiation of fast skeletal muscle into functional endothelium in vivo by transcription factor Etv2.
    Veldman MB; Zhao C; Gomez GA; Lindgren AG; Huang H; Yang H; Yao S; Martin BL; Kimelman D; Lin S
    PLoS Biol; 2013; 11(6):e1001590. PubMed ID: 23853546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA-3906 regulates fast muscle differentiation through modulating the target gene homer-1b in zebrafish embryos.
    Lin CY; Chen JS; Loo MR; Hsiao CC; Chang WY; Tsai HJ
    PLoS One; 2013; 8(7):e70187. PubMed ID: 23936160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutant-specific gene expression profiling identifies SRY-related HMG box 11b (SOX11b) as a novel regulator of vascular development in zebrafish.
    Schmitt CE; Woolls MJ; Jin SW
    Mol Cells; 2013 Feb; 35(2):166-72. PubMed ID: 23456338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A crucial interaction between embryonic red blood cell progenitors and paraxial mesoderm revealed in spadetail embryos.
    Rohde LA; Oates AC; Ho RK
    Dev Cell; 2004 Aug; 7(2):251-62. PubMed ID: 15296721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. foxc1 is required for embryonic head vascular smooth muscle differentiation in zebrafish.
    Whitesell TR; Chrystal PW; Ryu JR; Munsie N; Grosse A; French CR; Workentine ML; Li R; Zhu LJ; Waskiewicz A; Lehmann OJ; Lawson ND; Childs SJ
    Dev Biol; 2019 Sep; 453(1):34-47. PubMed ID: 31199900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nodal and BMP dispersal during early zebrafish development.
    Rogers KW; Müller P
    Dev Biol; 2019 Mar; 447(1):14-23. PubMed ID: 29653088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesendoderm specification depends on the function of Pou2, the class V POU-type transcription factor, during zebrafish embryogenesis.
    Khan A; Nakamoto A; Tai M; Saito S; Nakayama Y; Kawamura A; Takeda H; Yamasu K
    Dev Growth Differ; 2012 Sep; 54(7):686-701. PubMed ID: 22913532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ERK1 and ERK2 MAPK are key regulators of distinct gene sets in zebrafish embryogenesis.
    Krens SF; Corredor-Adámez M; He S; Snaar-Jagalska BE; Spaink HP
    BMC Genomics; 2008 Apr; 9():196. PubMed ID: 18442396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.