These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34234386)

  • 1. Beyond histograms: efficiently estimating radial distribution functions via spectral Monte Carlo.
    Patrone PN; Rosch TW
    J Chem Phys; 2017 Mar; 146(9):. PubMed ID: 34234386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inversion of radial distribution functions to pair forces by solving the Yvon-Born-Green equation iteratively.
    Cho HM; Chu JW
    J Chem Phys; 2009 Oct; 131(13):134107. PubMed ID: 19814543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability, Speed, and Constraints for Structural Coarse-Graining in VOTCA.
    Bernhardt MP; Hanke M; van der Vegt NFA
    J Chem Theory Comput; 2023 Jan; 19(2):580-95. PubMed ID: 36631066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculating particle pair potentials from fluid-state pair correlations: Iterative ornstein-zernike inversion.
    Heinen M
    J Comput Chem; 2018 Jul; 39(20):1531-1543. PubMed ID: 29707796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Configurational-Bias Monte Carlo Back-Mapping Algorithm for Efficient and Rapid Conversion of Coarse-Grained Water Structures into Atomistic Models.
    Loeffler TD; Chan H; Narayanan B; Cherukara MJ; Gray S; Sankaranarayanan SKRS
    J Phys Chem B; 2018 Jul; 122(28):7102-7110. PubMed ID: 29923722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MagiC: Software Package for Multiscale Modeling.
    Mirzoev A; Lyubartsev AP
    J Chem Theory Comput; 2013 Mar; 9(3):1512-20. PubMed ID: 26587613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-field parametrization based on radial and energy distribution functions.
    Chiba S; Okuno Y; Honma T; Ikeguchi M
    J Comput Chem; 2019 Nov; 40(29):2577-2585. PubMed ID: 31343749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative integral equation methods for structural coarse-graining.
    Bernhardt MP; Hanke M; van der Vegt NFA
    J Chem Phys; 2021 Feb; 154(8):084118. PubMed ID: 33639741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Getting over the hump with KAMEL-LOBE: Kernel-averaging method to eliminate length-of-bin effects in radial distribution functions.
    Ghaffarizadeh SA; Wang GJ
    J Chem Phys; 2023 Jun; 158(22):. PubMed ID: 37293961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Solvent-Mediated Coarse-Grained Model of DNA Derived with the Systematic Newton Inversion Method.
    Naômé A; Laaksonen A; Vercauteren DP
    J Chem Theory Comput; 2014 Aug; 10(8):3541-9. PubMed ID: 26588318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing pressure consistency and transferability of structure-based coarse-graining.
    Tang J; Kobayashi T; Zhang H; Fukuzawa K; Itoh S
    Phys Chem Chem Phys; 2023 Jan; 25(3):2256-2264. PubMed ID: 36594875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic coarse graining from structure using internal states: application to phospholipid/cholesterol bilayer.
    Murtola T; Karttunen M; Vattulainen I
    J Chem Phys; 2009 Aug; 131(5):055101. PubMed ID: 19673586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems.
    Beentjes CHL; Baker RE
    Bull Math Biol; 2019 Aug; 81(8):2931-2959. PubMed ID: 29802519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-grained lattice Monte Carlo simulations with continuous interaction potentials.
    Liu X; Seider WD; Sinno T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026708. PubMed ID: 23005883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removing the effect of statistical uncertainty on dose-volume histograms from Monte Carlo dose calculations.
    Jiang SB; Pawlicki T; Ma CM
    Phys Med Biol; 2000 Aug; 45(8):2151-61. PubMed ID: 10958186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic coarse-graining of molecular models by the Newton inversion method.
    Lyubartsev A; Mirzoev A; Chen L; Laaksonen A
    Faraday Discuss; 2010; 144():43-56; discussion 93-110, 467-81. PubMed ID: 20158022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale coarse-grained simulations of ionic liquids: comparison of three approaches to derive effective potentials.
    Wang YL; Lyubartsev A; Lu ZY; Laaksonen A
    Phys Chem Chem Phys; 2013 May; 15(20):7701-12. PubMed ID: 23595102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale.
    Okada S; Murakami K; Incerti S; Amako K; Sasaki T
    Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate SCC-DFTB Parametrization of Liquid Water with Improved Atomic Charges and Iterative Boltzmann Inversion.
    Cinq N; Simon A; Louisnard F; Cuny J
    J Phys Chem B; 2023 Sep; 127(35):7590-7601. PubMed ID: 37603798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.