BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34234839)

  • 1. A Calibrated Multiexit Neural Network for Detecting Urothelial Cancer Cells.
    Lilli L; Giarnieri E; Scardapane S
    Comput Math Methods Med; 2021; 2021():5569458. PubMed ID: 34234839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of an artificial intelligence algorithm for reporting urine cytopathology.
    Sanghvi AB; Allen EZ; Callenberg KM; Pantanowitz L
    Cancer Cytopathol; 2019 Oct; 127(10):658-666. PubMed ID: 31412169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm.
    Wu W; Li D; Du J; Gao X; Gu W; Zhao F; Feng X; Yan H
    Comput Math Methods Med; 2020; 2020():6789306. PubMed ID: 32733596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using multi-layer perceptron with Laplacian edge detector for bladder cancer diagnosis.
    Lorencin I; Anđelić N; Španjol J; Car Z
    Artif Intell Med; 2020 Jan; 102():101746. PubMed ID: 31980088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms.
    Alsaade FW; Aldhyani THH; Al-Adhaileh MH
    Comput Math Methods Med; 2021; 2021():9998379. PubMed ID: 34055044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel fused convolutional neural network for biomedical image classification.
    Pang S; Du A; Orgun MA; Yu Z
    Med Biol Eng Comput; 2019 Jan; 57(1):107-121. PubMed ID: 30003400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gastrointestinal Tract Disease Classification from Wireless Endoscopy Images Using Pretrained Deep Learning Model.
    Yogapriya J; Chandran V; Sumithra MG; Anitha P; Jenopaul P; Suresh Gnana Dhas C
    Comput Math Methods Med; 2021; 2021():5940433. PubMed ID: 34545292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning.
    Mitra A; Banerjee PS; Roy S; Roy S; Setua SK
    Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multifeature Extraction Method Using Deep Residual Network for MR Image Denoising.
    Yao L
    Comput Math Methods Med; 2020; 2020():8823861. PubMed ID: 33204301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning network-assisted bladder tumour recognition under cystoscopy based on Caffe deep learning framework and EasyDL platform.
    Du Y; Yang R; Chen Z; Wang L; Weng X; Liu X
    Int J Med Robot; 2021 Feb; 17(1):1-8. PubMed ID: 32947648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single Shot Multibox Detector Automatic Polyp Detection Network Based on Gastrointestinal Endoscopic Images.
    Chen X; Zhang K; Lin S; Dai KF; Yun Y
    Comput Math Methods Med; 2021; 2021():2144472. PubMed ID: 34777559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medical Image Retrieval Using Empirical Mode Decomposition with Deep Convolutional Neural Network.
    Zhang S; Zhi L; Zhou T
    Biomed Res Int; 2020; 2020():6687733. PubMed ID: 33426062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning.
    Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesizing Chest X-Ray Pathology for Training Deep Convolutional Neural Networks.
    Salehinejad H; Colak E; Dowdell T; Barfett J; Valaee S
    IEEE Trans Med Imaging; 2019 May; 38(5):1197-1206. PubMed ID: 30442603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic recognition of bladder tumours using deep learning technology and its clinical application.
    Yang R; Du Y; Weng X; Chen Z; Wang S; Liu X
    Int J Med Robot; 2021 Apr; 17(2):e2194. PubMed ID: 33119212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI.
    Jiao H; Jiang X; Pang Z; Lin X; Huang Y; Li L
    Comput Math Methods Med; 2020; 2020():2413706. PubMed ID: 32454879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans.
    da Silva GLF; Diniz PS; Ferreira JL; França JVF; Silva AC; de Paiva AC; de Cavalcanti EAA
    Med Biol Eng Comput; 2020 Sep; 58(9):1947-1964. PubMed ID: 32566988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Intelligence Method for Detection of White Blood Cells Using Hybrid of Convolutional Deep Learning and SIFT.
    Manthouri M; Aghajari Z; Safary S
    Comput Math Methods Med; 2022; 2022():9934144. PubMed ID: 35069796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CAST: A multi-scale convolutional neural network based automated hippocampal subfield segmentation toolbox.
    Yang Z; Zhuang X; Mishra V; Sreenivasan K; Cordes D
    Neuroimage; 2020 Sep; 218():116947. PubMed ID: 32474081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.