These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 34235216)
1. FRL: An Integrative Feature Selection Algorithm Based on the Fisher Score, Recursive Feature Elimination, and Logistic Regression to Identify Potential Genomic Biomarkers. Ge C; Luo L; Zhang J; Meng X; Chen Y Biomed Res Int; 2021; 2021():4312850. PubMed ID: 34235216 [TBL] [Abstract][Full Text] [Related]
2. A two-stage hybrid biomarker selection method based on ensemble filter and binary differential evolution incorporating binary African vultures optimization. Li W; Chi Y; Yu K; Xie W BMC Bioinformatics; 2023 Apr; 24(1):130. PubMed ID: 37016297 [TBL] [Abstract][Full Text] [Related]
3. Robust biomarker screening from gene expression data by stable machine learning-recursive feature elimination methods. Li L; Ching WK; Liu ZP Comput Biol Chem; 2022 Oct; 100():107747. PubMed ID: 35932551 [TBL] [Abstract][Full Text] [Related]
4. FS-GBDT: identification multicancer-risk module via a feature selection algorithm by integrating Fisher score and GBDT. Zhang J; Xu D; Hao K; Zhang Y; Chen W; Liu J; Gao R; Wu C; De Marinis Y Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020547 [TBL] [Abstract][Full Text] [Related]
5. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. Zhang X; Lu X; Shi Q; Xu XQ; Leung HC; Harris LN; Iglehart JD; Miron A; Liu JS; Wong WH BMC Bioinformatics; 2006 Apr; 7():197. PubMed ID: 16606446 [TBL] [Abstract][Full Text] [Related]
6. Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood. Zhang F; Kaufman HL; Deng Y; Drabier R BMC Med Genomics; 2013; 6 Suppl 1(Suppl 1):S4. PubMed ID: 23369435 [TBL] [Abstract][Full Text] [Related]
7. AMYPred-FRL is a novel approach for accurate prediction of amyloid proteins by using feature representation learning. Charoenkwan P; Ahmed S; Nantasenamat C; Quinn JMW; Moni MA; Lio' P; Shoombuatong W Sci Rep; 2022 May; 12(1):7697. PubMed ID: 35546347 [TBL] [Abstract][Full Text] [Related]
8. Robust biomarker discovery for hepatocellular carcinoma from high-throughput data by multiple feature selection methods. Zhang Z; Liu ZP BMC Med Genomics; 2021 Aug; 14(Suppl 1):112. PubMed ID: 34433487 [TBL] [Abstract][Full Text] [Related]
9. The feature selection bias problem in relation to high-dimensional gene data. Krawczuk J; Ćukaszuk T Artif Intell Med; 2016 Jan; 66():63-71. PubMed ID: 26674595 [TBL] [Abstract][Full Text] [Related]
10. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data. Zhang Y; Deng Q; Liang W; Zou X Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989 [TBL] [Abstract][Full Text] [Related]
11. Multiple SVM-RFE for gene selection in cancer classification with expression data. Duan KB; Rajapakse JC; Wang H; Azuaje F IEEE Trans Nanobioscience; 2005 Sep; 4(3):228-34. PubMed ID: 16220686 [TBL] [Abstract][Full Text] [Related]
12. New algorithms for multi-class cancer diagnosis using tumor gene expression signatures. Bagirov AM; Ferguson B; Ivkovic S; Saunders G; Yearwood J Bioinformatics; 2003 Sep; 19(14):1800-7. PubMed ID: 14512351 [TBL] [Abstract][Full Text] [Related]
13. Analysis of potential genetic biomarkers and molecular mechanism of smoking-related postmenopausal osteoporosis using weighted gene co-expression network analysis and machine learning. Li S; Chen B; Chen H; Hua Z; Shao Y; Yin H; Wang J PLoS One; 2021; 16(9):e0257343. PubMed ID: 34555052 [TBL] [Abstract][Full Text] [Related]
15. Compact cancer biomarkers discovery using a swarm intelligence feature selection algorithm. Martinez E; Alvarez MM; Trevino V Comput Biol Chem; 2010 Aug; 34(4):244-50. PubMed ID: 20888301 [TBL] [Abstract][Full Text] [Related]
16. Feature selection with the Fisher score followed by the Maximal Clique Centrality algorithm can accurately identify the hub genes of hepatocellular carcinoma. Li C; Xu J Sci Rep; 2019 Nov; 9(1):17283. PubMed ID: 31754223 [TBL] [Abstract][Full Text] [Related]
17. Ensemble Feature Learning of Genomic Data Using Support Vector Machine. Anaissi A; Goyal M; Catchpoole DR; Braytee A; Kennedy PJ PLoS One; 2016; 11(6):e0157330. PubMed ID: 27304923 [TBL] [Abstract][Full Text] [Related]
18. Recursive cluster elimination (RCE) for classification and feature selection from gene expression data. Yousef M; Jung S; Showe LC; Showe MK BMC Bioinformatics; 2007 May; 8():144. PubMed ID: 17474999 [TBL] [Abstract][Full Text] [Related]
19. Mining gene expression data of multiple sclerosis. Guo P; Zhang Q; Zhu Z; Huang Z; Li K PLoS One; 2014; 9(6):e100052. PubMed ID: 24932510 [TBL] [Abstract][Full Text] [Related]
20. Robust feature selection for microarray data based on multicriterion fusion. Yang F; Mao KZ IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):1080-92. PubMed ID: 21566255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]