BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34235329)

  • 1. Multistep Fractionation of Coal and Application for Graphene Synthesis.
    Rane K; Adams JJ; Thode JM; Leonard BM; Huo J; Goual L
    ACS Omega; 2021 Jun; 6(25):16573-16583. PubMed ID: 34235329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films.
    Tao L; Lee J; Chou H; Holt M; Ruoff RS; Akinwande D
    ACS Nano; 2012 Mar; 6(3):2319-25. PubMed ID: 22314052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure.
    Losurdo M; Giangregorio MM; Capezzuto P; Bruno G
    Phys Chem Chem Phys; 2011 Dec; 13(46):20836-43. PubMed ID: 22006173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical vapor deposition of N-doped graphene and carbon films: the role of precursors and gas phase.
    Ito Y; Christodoulou C; Nardi MV; Koch N; Sachdev H; Müllen K
    ACS Nano; 2014 Apr; 8(4):3337-46. PubMed ID: 24641621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mass ranges of coal tar pitch fractions by mass spectrometry and size-exclusion chromatography.
    Karaca F; Morgan TJ; George A; Bull ID; Herod AA; Millan M; Kandiyoti R
    Rapid Commun Mass Spectrom; 2009 Jul; 23(13):2087-98. PubMed ID: 19489019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the Magnetic Properties of Carbon by Nitrogen Doping of Its Graphene Domains.
    Ito Y; Christodoulou C; Nardi MV; Koch N; Kläui M; Sachdev H; Müllen K
    J Am Chem Soc; 2015 Jun; 137(24):7678-85. PubMed ID: 25932672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous Nucleation and Growth of Graphene Flakes on Copper Foil in the Absence of External Carbon Precursor in Chemical Vapor Deposition.
    Khaksaran MH; Kaya II
    ACS Omega; 2018 Oct; 3(10):12575-12583. PubMed ID: 31457991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Asphalt Aging Using Multivariate Analysis Applied to Saturates, Aromatics, Resins, and Asphaltene Determinator Data.
    Bruneau L; Tisse S; Michon L; Cardinael P
    ACS Omega; 2023 Jul; 8(28):24773-24785. PubMed ID: 37483178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper-Vapor-Assisted Growth and Defect-Healing of Graphene on Copper Surfaces.
    Lee HC; Bong H; Yoo MS; Jo M; Cho K
    Small; 2018 Jul; 14(30):e1801181. PubMed ID: 29966039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of oxygen on controlling the number of carbon layers in the chemical vapor deposition of graphene on a nickel substrate.
    Dou WD; Yang Q; Lee CS
    Nanotechnology; 2013 May; 24(18):185603. PubMed ID: 23575390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the Hydroconversion Law of Coal-Based Heavy Fractions with Different Catalyst Contents Based on an Improved Separation Method.
    Wang Y; Tian F; Zhu Y; Cui L; Fan X; Du C; Wang F; Zheng H; Yang Y; Li D
    ACS Omega; 2023 Jun; 8(25):22440-22452. PubMed ID: 37396277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote catalyzation for direct formation of graphene layers on oxides.
    Teng PY; Lu CC; Akiyama-Hasegawa K; Lin YC; Yeh CH; Suenaga K; Chiu PW
    Nano Lett; 2012 Mar; 12(3):1379-84. PubMed ID: 22332771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres.
    Strudwick AJ; Weber NE; Schwab MG; Kettner M; Weitz RT; Wünsch JR; Müllen K; Sachdev H
    ACS Nano; 2015 Jan; 9(1):31-42. PubMed ID: 25398132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of Copper Surface for the Synthesis of Single-Layer Graphene.
    Kondrashov I; Komlenok M; Pivovarov P; Savin S; Obraztsova E; Rybin M
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33921942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of graphene derivatives from asphaltenes and effect of carbonization temperature on their structural parameters.
    AlHumaidan FS; Rana MS; Vinoba M; AlSheeha HM; Ali AA; Navvamani R
    RSC Adv; 2023 Mar; 13(12):7766-7779. PubMed ID: 36909755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Temperature Chemical Vapor Deposition Growth of Graphene Layers on Copper Substrate Using Camphor Precursor.
    Kavitha K; Urade AR; Kaur G; Lahiri I
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7698-7704. PubMed ID: 32711645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.