BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34235329)

  • 41. Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition.
    Procházka P; Mach J; Bischoff D; Lišková Z; Dvořák P; Vaňatka M; Simonet P; Varlet A; Hemzal D; Petrenec M; Kalina L; Bartošík M; Ensslin K; Varga P; Čechal J; Šikola T
    Nanotechnology; 2014 May; 25(18):185601. PubMed ID: 24739598
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Atmospheric Pressure Catalytic Vapor Deposition of Graphene on Liquid Sn and Cu-Sn Alloy Substrates.
    Saeed MA; Kinloch IA; Derby B
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33126626
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition.
    Li X; Colombo L; Ruoff RS
    Adv Mater; 2016 Aug; 28(29):6247-52. PubMed ID: 26991960
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A study of graphene films synthesized on nickel substrates: existence and origin of small-base-area peaks.
    Kahng YH; Lee S; Choe M; Jo G; Park W; Yoon J; Hong WK; Cho CH; Lee BH; Lee T
    Nanotechnology; 2011 Jan; 22(4):045706. PubMed ID: 21169664
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Growth of lateral graphene/h-BN heterostructure on copper foils by chemical vapor deposition.
    Zhuang P; Lin W; Chou H; Roy A; Cai W; Banerjee SK
    Nanotechnology; 2019 Jan; 30(3):03LT01. PubMed ID: 30418941
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Graphene-nickel interfaces: a review.
    Dahal A; Batzill M
    Nanoscale; 2014 Mar; 6(5):2548-62. PubMed ID: 24477601
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct Growth of Graphene on Insulator Using Liquid Precursor Via an Intermediate Nanostructured State Carbon Nanotube.
    Nayak PK
    Nanoscale Res Lett; 2019 Mar; 14(1):107. PubMed ID: 30903401
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Local atomic and electronic structure of boron chemical doping in monolayer graphene.
    Zhao L; Levendorf M; Goncher S; Schiros T; Pálová L; Zabet-Khosousi A; Rim KT; Gutiérrez C; Nordlund D; Jaye C; Hybertsen M; Reichman D; Flynn GW; Park J; Pasupathy AN
    Nano Lett; 2013 Oct; 13(10):4659-65. PubMed ID: 24032458
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Atomistic modelling of CVD synthesis of carbon nanotubes and graphene.
    Elliott JA; Shibuta Y; Amara H; Bichara C; Neyts EC
    Nanoscale; 2013 Aug; 5(15):6662-76. PubMed ID: 23774798
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties.
    Capasso A; Dikonimos T; Sarto F; Tamburrano A; De Bellis G; Sarto MS; Faggio G; Malara A; Messina G; Lisi N
    Beilstein J Nanotechnol; 2015; 6():2028-38. PubMed ID: 26665073
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of Large-Area Single-Layer Graphene Using Refined Cooking Palm Oil on Copper Substrate by Spray Injector-Assisted CVD.
    Maarof S; Ali AA; Hashim AM
    Nanoscale Res Lett; 2019 Apr; 14(1):143. PubMed ID: 31016416
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transferless Inverted Graphene/Silicon Heterostructures Prepared by Plasma-Enhanced Chemical Vapor Deposition of Amorphous Silicon on CVD Graphene.
    Müller M; Bouša M; Hájková Z; Ledinský M; Fejfar A; Drogowska-Horná K; Kalbáč M; Frank AO
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32213885
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Repeated growth-etching-regrowth for large-area defect-free single-crystal graphene by chemical vapor deposition.
    Ma T; Ren W; Liu Z; Huang L; Ma LP; Ma X; Zhang Z; Peng LM; Cheng HM
    ACS Nano; 2014 Dec; 8(12):12806-13. PubMed ID: 25418823
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of copper pre-cleaning on graphene synthesis.
    Kim SM; Hsu A; Lee YH; Dresselhaus M; Palacios T; Kim KK; Kong J
    Nanotechnology; 2013 Sep; 24(36):365602. PubMed ID: 23942278
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thinning segregated graphene layers on high carbon solubility substrates of rhodium foils by tuning the quenching process.
    Liu M; Zhang Y; Chen Y; Gao Y; Gao T; Ma D; Ji Q; Zhang Y; Li C; Liu Z
    ACS Nano; 2012 Dec; 6(12):10581-9. PubMed ID: 23157621
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis and interface characterization of CNTs on graphene.
    Zhou C; Senegor R; Baron Z; Chen Y; Raju S; Vyas AA; Chan M; Chai Y; Yang CY
    Nanotechnology; 2017 Feb; 28(5):054007. PubMed ID: 28029110
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization and Manipulation of Carbon Precursor Species during Plasma Enhanced Chemical Vapor Deposition of Graphene.
    Zietz O; Olson S; Coyne B; Liu Y; Jiao J
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33187078
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration.
    Chang SJ; Hyun MS; Myung S; Kang MA; Yoo JH; Lee KG; Choi BG; Cho Y; Lee G; Park TJ
    Sci Rep; 2016 Mar; 6():22653. PubMed ID: 26961409
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply.
    Xu X; Zhang Z; Qiu L; Zhuang J; Zhang L; Wang H; Liao C; Song H; Qiao R; Gao P; Hu Z; Liao L; Liao Z; Yu D; Wang E; Ding F; Peng H; Liu K
    Nat Nanotechnol; 2016 Nov; 11(11):930-935. PubMed ID: 27501317
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evolution of Structural and Electrical Properties of Carbon Films from Amorphous Carbon to Nanocrystalline Graphene on Quartz Glass by HFCVD.
    Zhai Z; Shen H; Chen J; Li X; Jiang Y
    ACS Appl Mater Interfaces; 2018 May; 10(20):17427-17436. PubMed ID: 29694019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.