These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34235329)

  • 61. Solution-phase synthesis of heteroatom-substituted carbon scaffolds for hydrogen storage.
    Jin Z; Sun Z; Simpson LJ; O'Neill KJ; Parilla PA; Li Y; Stadie NP; Ahn CC; Kittrell C; Tour JM
    J Am Chem Soc; 2010 Nov; 132(43):15246-51. PubMed ID: 20929219
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transfer-free batch fabrication of large-area suspended graphene membranes.
    Alemán B; Regan W; Aloni S; Altoe V; Alem N; Girit C; Geng B; Maserati L; Crommie M; Wang F; Zettl A
    ACS Nano; 2010 Aug; 4(8):4762-8. PubMed ID: 20604526
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of Asphaltene Aggregation in Model Heptane-Toluene Mixtures on Stability of Water-in-Oil Emulsions.
    McLean JD; Kilpatrick PK
    J Colloid Interface Sci; 1997 Dec; 196(1):23-34. PubMed ID: 9441646
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Parametric Study on the Influence of Synthesis and Transfer Conditions on the Quality of Graphene.
    Kumar R; Mehta BR
    J Nanosci Nanotechnol; 2017 Jan; 17(1):286-99. PubMed ID: 29620798
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Residual metallic contamination of transferred chemical vapor deposited graphene.
    Lupina G; Kitzmann J; Costina I; Lukosius M; Wenger C; Wolff A; Vaziri S; Östling M; Pasternak I; Krajewska A; Strupinski W; Kataria S; Gahoi A; Lemme MC; Ruhl G; Zoth G; Luxenhofer O; Mehr W
    ACS Nano; 2015 May; 9(5):4776-85. PubMed ID: 25853630
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Direct Growth of Highly Stable Patterned Graphene on Dielectric Insulators using a Surface-Adhered Solid Carbon Source.
    Lee E; Lee SG; Lee HC; Jo M; Yoo MS; Cho K
    Adv Mater; 2018 Apr; 30(15):e1706569. PubMed ID: 29473234
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Multiple growth of graphene from a pre-dissolved carbon source.
    Fazi A; Nylander A; Zehri A; Sun J; Malmberg P; Ye L; Liu J; Fu Y
    Nanotechnology; 2020 Aug; 31(34):345601. PubMed ID: 32369782
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Ternary Alloy Substrate to Synthesize Monolayer Graphene with Liquid Carbon Precursor.
    Gan W; Han N; Yang C; Wu P; Liu Q; Zhu W; Chen S; Wu C; Habib M; Sang Y; Muhammad Z; Zhao J; Song L
    ACS Nano; 2017 Feb; 11(2):1371-1379. PubMed ID: 28085266
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Growth of adlayer graphene on Cu studied by carbon isotope labeling.
    Li Q; Chou H; Zhong JH; Liu JY; Dolocan A; Zhang J; Zhou Y; Ruoff RS; Chen S; Cai W
    Nano Lett; 2013 Feb; 13(2):486-90. PubMed ID: 23278710
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Synthesis of graphene by in situ catalytic chemical vapor deposition of reed as a carbon source for VOC adsorption.
    Rahbar Shamskar K; Rashidi A; Aberoomand Azar P; Yousefi M; Baniyaghoob S
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3643-3650. PubMed ID: 30535738
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High Oxidation Resistance of CVD Graphene-Reinforced Copper Matrix Composites.
    Wu M; Hou B; Shu S; Li A; Geng Q; Li H; Shi Y; Yang M; Du S; Wang JQ; Liao S; Jiang N; Dai D; Lin CT
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30939727
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Synthesis of Different Layers of Graphene on Stainless Steel Using the CVD Method.
    Ghaemi F; Abdullah LC; Tahir PM; Yunus R
    Nanoscale Res Lett; 2016 Dec; 11(1):506. PubMed ID: 27854079
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation.
    Wang H; Wang G; Bao P; Yang S; Zhu W; Xie X; Zhang WJ
    J Am Chem Soc; 2012 Feb; 134(8):3627-30. PubMed ID: 22324740
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Substrate considerations for graphene synthesis on thin copper films.
    Howsare CA; Weng X; Bojan V; Snyder D; Robinson JA
    Nanotechnology; 2012 Apr; 23(13):135601. PubMed ID: 22418897
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Graphene ultrathin film electrode for detection of lead ions in acetate buffer solution.
    Wang Z; Liu E
    Talanta; 2013 Jan; 103():47-55. PubMed ID: 23200357
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In situ chemical probing of hole defects and cracks in graphene at room temperature.
    Altan AI; Chen J
    Nanoscale; 2018 Jun; 10(23):11052-11063. PubMed ID: 29872823
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Intergrain Diffusion of Carbon Radical for Wafer-Scale, Direct Growth of Graphene on Silicon-Based Dielectrics.
    Nguyen P; Behura SK; Seacrist MR; Berry V
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26517-26525. PubMed ID: 30009598
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Controllable poly-crystalline bilayered and multilayered graphene film growth by reciprocal chemical vapor deposition.
    Wu Q; Jung SJ; Jang SK; Lee J; Jeon I; Suh H; Kim YH; Lee YH; Lee S; Song YJ
    Nanoscale; 2015 Jun; 7(23):10357-61. PubMed ID: 26006180
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Chemical vapor deposition and characterization of aligned and incommensurate graphene/hexagonal boron nitride heterostack on Cu(111).
    Roth S; Matsui F; Greber T; Osterwalder J
    Nano Lett; 2013 Jun; 13(6):2668-75. PubMed ID: 23656509
    [TBL] [Abstract][Full Text] [Related]  

  • 80. CuNiO nanoparticles assembled on graphene as an effective platform for enzyme-free glucose sensing.
    Zhang X; Liao Q; Liu S; Xu W; Liu Y; Zhang Y
    Anal Chim Acta; 2015 Feb; 858():49-54. PubMed ID: 25597801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.